Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2015_11_a2, author = {A. F. Gainutdinova}, title = {Comparative complexity of quantum and classical {OBDDs} for total and partial functions}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {32--43}, publisher = {mathdoc}, number = {11}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2015_11_a2/} }
TY - JOUR AU - A. F. Gainutdinova TI - Comparative complexity of quantum and classical OBDDs for total and partial functions JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 32 EP - 43 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2015_11_a2/ LA - ru ID - IVM_2015_11_a2 ER -
A. F. Gainutdinova. Comparative complexity of quantum and classical OBDDs for total and partial functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2015), pp. 32-43. http://geodesic.mathdoc.fr/item/IVM_2015_11_a2/
[1] Manin Yu. I., Vychislimoe i nevychislimoe, Sov. radio, M., 1980 | MR
[2] Feynman R., “Simulating physics with computers”, Intern. J. Theor. Phys., 21:6–7 (1982), 467–488 | DOI | MR
[3] Nilsen M., Chang I., Kvantovye vychisleniya i kvantovaya informatsiya, Mir, M., 2006
[4] Shor P., “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer”, SIAM J. Comput., 26:5 (1997), 1484–1509 | DOI | MR | Zbl
[5] Grover L., “A fast quantum mechanical algorithm for database search”, Proc. of 28th STOC (Philadelphia, PA, USA, 1996), ACM, New York, 1996, 212–219 | MR | Zbl
[6] Wegener I., Branching programs and binary decision diagrams, SIAM, 2000 | MR | Zbl
[7] Ablayev F., Gainutdinova A., Karpinski M., “On computational power of quantum branching programs”, Proc. of the 13th Intern. Symposium “Fundamentals of computation theory”, FCT (Riga, Latvia, 2001), Lecture Notes in Computer Science, 2138, Springer-Verlag, 2001, 59–70 | DOI | MR | Zbl
[8] Barrington D., “Vetvyaschiesya programmy ogranichennoi shiriny, imeyuschie polinomialnuyu slozhnost, raspoznayut v tochnosti yazyki iz $NC^1$”, Kiberneticheskii sbornik, 28, Mir, M., 1991, 94–113
[9] Nakanishi M., Hamaguchi K., Kashiwabara T., “Ordered quantum branching programs are more powerful than ordered probabilistic branching programs under a bounded-width restriction”, Proc. of the 6th Annual Intern. Conf. on Computing and Combinatorics COCOON'2000, Lecture Notes in Computer Science, 1858, Springer-Verlag, 2000, 467–476 | DOI | MR | Zbl
[10] Sauerhoff M., Sieling D., “Quantum branching programs and space-bounded nonuniform quantum complexity”, Theoret. Comput. Sci., 334:1–3 (2005), 177–225 ; arXiv: quant-ph/0403164 | DOI | MR | Zbl
[11] Gainutdinova A. F., “O sravnitelnoi slozhnosti kvantovykh i klassicheskikh binarnykh programm”, Diskr. matem., 14:3 (2002), 109–121 | DOI | MR | Zbl
[12] Ablayev F., Gainutdinova A., Karpinski M., Moore C., Pollette C., “On the computational power of probabilistic and quantum branching program”, Inform. and Comput., 203:2 (2005), 145–162 | DOI | MR | Zbl
[13] Sholomov L. A., Osnovy teorii diskretnykh logicheskikh i vychislitelnykh ustroistv, Nauka, M., 1980
[14] Ambainis A., Yakaryılmaz A., “Superiority of exact quantum automata for promise problems”, Inform. Process. Lett., 112:7 (2012), 289–291 | DOI | MR | Zbl
[15] Kemeny J. G., Snell J. L., Finite Markov Chains, Van Nostrand Company, inc., 1960 | MR | Zbl