Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2015_10_a6, author = {I. B. Badriev and M. V. Makarov and V. N. Paimushin}, title = {Solvability of a~physically and geometrically nonlinear problem of the theory of sandwich plates with transversal-soft core}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {66--71}, publisher = {mathdoc}, number = {10}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2015_10_a6/} }
TY - JOUR AU - I. B. Badriev AU - M. V. Makarov AU - V. N. Paimushin TI - Solvability of a~physically and geometrically nonlinear problem of the theory of sandwich plates with transversal-soft core JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 66 EP - 71 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2015_10_a6/ LA - ru ID - IVM_2015_10_a6 ER -
%0 Journal Article %A I. B. Badriev %A M. V. Makarov %A V. N. Paimushin %T Solvability of a~physically and geometrically nonlinear problem of the theory of sandwich plates with transversal-soft core %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2015 %P 66-71 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2015_10_a6/ %G ru %F IVM_2015_10_a6
I. B. Badriev; M. V. Makarov; V. N. Paimushin. Solvability of a~physically and geometrically nonlinear problem of the theory of sandwich plates with transversal-soft core. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2015), pp. 66-71. http://geodesic.mathdoc.fr/item/IVM_2015_10_a6/
[1] Paimushin V. N., Bobrov S. N., “Refined geometric nonlinear theory of sandwich shells with a transversely soft core of medium thickness for investigation of mixed buckling forms”, Mech. of composite materials, 36:1 (2000), 59–66 | DOI
[2] Paimushin V. N., “Nonlinear theory of the central bending of three-layer shells with defects in the form of sections of bonding failure”, Sov. Appl. Mech., 23:11 (1987), 1038–1043 | DOI
[3] Badriev I. B., Banderov V. V., Makarov M. V., Paimushin V. N., “Determination of stress-strain state of geometrically nonlinear sandwich plate”, Appl. Math. Sci., 9:78 (2015), 3887–3895
[4] Karchevskii M. M., Paimushin V. N., “O variatsionnykh zadachakh teorii trekhsloinykh pologikh obolochek”, Differents. uravneniya, 30:7 (1994), 1217–1221 | MR
[5] Badriev I. B., Banderov V. V., “Iterative methods for solving variational inequalities of the theory of soft shells”, Lobachevskii J. Math., 35:4 (2014), 354–365 | DOI | MR
[6] Badriev I. B., Banderov V. V., “Numerical method for solving variation problems in mathematical physics”, Appl. Mech. and Materials, 668–669 (2014), 1094–1097 | DOI
[7] Paimushin V. N., “K variatsionnym metodam resheniya nelineinykh prostranstvennykh zadach sopryazheniya deformiruemykh tel”, DAN SSSR, 273:5 (1983), 1083–1086 | MR
[8] Paimushin V. N., “Obobschennyi variatsionnyi printsip Reissnera v nelineinoi mekhanike prostranstvennykh sostavnykh tel s prilozheniyami k teorii mnogosloinykh obolochek”, Izv. AN SSSR. Mekhan. tverd. tela, 1987, no. 2, 171–180
[9] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR
[10] Glowinski R., Lions J.-L., Tremolieres R., Analyse numérique des inéquations variationnelles, Dunod, Paris, 1976
[11] Fortin M., Glowinski R., Augmented Lagrangian methods: Applications to the numerical solution of boundary-value problems, North-Holland, Amsterdam, 1983 | MR | Zbl
[12] Badriev I. B., Garipova G. Z., Makarov M. V., Paimushin V. N., Khabibullin R. F., “O reshenii fizicheski nelineinykh zadach o ravnovesii trekhsloinykh plastin s transversalno-myagkim zapolnitelem”, Uchen. zap. Kazansk. un-ta. Ser. fiz.-matem. nauki, 157, no. 1, 2015, 15–24
[13] Lapin A. V., “Preconditioned Uzawa-type methods for finite-dimensional constrained saddle point problems”, Lobachevskii J. Math., 31:4 (2010), 309–322 | DOI | MR | Zbl