Solvability of a~physically and geometrically nonlinear problem of the theory of sandwich plates with transversal-soft core
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2015), pp. 66-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a generalized statement of geometrically and physically nonlinear problem of the equilibrium of sandwich plate with transversal-soft core. Generalized statement is formulated as a problem of finding a saddle point of a functional. We investigate the properties of this functional. These properties allow to prove a theorem of solvability of variational problem under consideration.
Keywords: sandwich plate, saddle point, theorem of solvability.
Mots-clés : transversal-soft core
@article{IVM_2015_10_a6,
     author = {I. B. Badriev and M. V. Makarov and V. N. Paimushin},
     title = {Solvability of a~physically and geometrically nonlinear problem of the theory of sandwich plates with transversal-soft core},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {66--71},
     publisher = {mathdoc},
     number = {10},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_10_a6/}
}
TY  - JOUR
AU  - I. B. Badriev
AU  - M. V. Makarov
AU  - V. N. Paimushin
TI  - Solvability of a~physically and geometrically nonlinear problem of the theory of sandwich plates with transversal-soft core
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 66
EP  - 71
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_10_a6/
LA  - ru
ID  - IVM_2015_10_a6
ER  - 
%0 Journal Article
%A I. B. Badriev
%A M. V. Makarov
%A V. N. Paimushin
%T Solvability of a~physically and geometrically nonlinear problem of the theory of sandwich plates with transversal-soft core
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 66-71
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_10_a6/
%G ru
%F IVM_2015_10_a6
I. B. Badriev; M. V. Makarov; V. N. Paimushin. Solvability of a~physically and geometrically nonlinear problem of the theory of sandwich plates with transversal-soft core. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2015), pp. 66-71. http://geodesic.mathdoc.fr/item/IVM_2015_10_a6/

[1] Paimushin V. N., Bobrov S. N., “Refined geometric nonlinear theory of sandwich shells with a transversely soft core of medium thickness for investigation of mixed buckling forms”, Mech. of composite materials, 36:1 (2000), 59–66 | DOI

[2] Paimushin V. N., “Nonlinear theory of the central bending of three-layer shells with defects in the form of sections of bonding failure”, Sov. Appl. Mech., 23:11 (1987), 1038–1043 | DOI

[3] Badriev I. B., Banderov V. V., Makarov M. V., Paimushin V. N., “Determination of stress-strain state of geometrically nonlinear sandwich plate”, Appl. Math. Sci., 9:78 (2015), 3887–3895

[4] Karchevskii M. M., Paimushin V. N., “O variatsionnykh zadachakh teorii trekhsloinykh pologikh obolochek”, Differents. uravneniya, 30:7 (1994), 1217–1221 | MR

[5] Badriev I. B., Banderov V. V., “Iterative methods for solving variational inequalities of the theory of soft shells”, Lobachevskii J. Math., 35:4 (2014), 354–365 | DOI | MR

[6] Badriev I. B., Banderov V. V., “Numerical method for solving variation problems in mathematical physics”, Appl. Mech. and Materials, 668–669 (2014), 1094–1097 | DOI

[7] Paimushin V. N., “K variatsionnym metodam resheniya nelineinykh prostranstvennykh zadach sopryazheniya deformiruemykh tel”, DAN SSSR, 273:5 (1983), 1083–1086 | MR

[8] Paimushin V. N., “Obobschennyi variatsionnyi printsip Reissnera v nelineinoi mekhanike prostranstvennykh sostavnykh tel s prilozheniyami k teorii mnogosloinykh obolochek”, Izv. AN SSSR. Mekhan. tverd. tela, 1987, no. 2, 171–180

[9] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[10] Glowinski R., Lions J.-L., Tremolieres R., Analyse numérique des inéquations variationnelles, Dunod, Paris, 1976

[11] Fortin M., Glowinski R., Augmented Lagrangian methods: Applications to the numerical solution of boundary-value problems, North-Holland, Amsterdam, 1983 | MR | Zbl

[12] Badriev I. B., Garipova G. Z., Makarov M. V., Paimushin V. N., Khabibullin R. F., “O reshenii fizicheski nelineinykh zadach o ravnovesii trekhsloinykh plastin s transversalno-myagkim zapolnitelem”, Uchen. zap. Kazansk. un-ta. Ser. fiz.-matem. nauki, 157, no. 1, 2015, 15–24

[13] Lapin A. V., “Preconditioned Uzawa-type methods for finite-dimensional constrained saddle point problems”, Lobachevskii J. Math., 31:4 (2010), 309–322 | DOI | MR | Zbl