Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2015_10_a1, author = {Nguyen Buong and Nguen Thi Hong Phuong and Nguyen Thi Thu Thuy}, title = {Explicit iteration methods for a~class of variational inequalities in {Banach} spaces}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {19--26}, publisher = {mathdoc}, number = {10}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2015_10_a1/} }
TY - JOUR AU - Nguyen Buong AU - Nguen Thi Hong Phuong AU - Nguyen Thi Thu Thuy TI - Explicit iteration methods for a~class of variational inequalities in Banach spaces JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 19 EP - 26 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2015_10_a1/ LA - ru ID - IVM_2015_10_a1 ER -
%0 Journal Article %A Nguyen Buong %A Nguen Thi Hong Phuong %A Nguyen Thi Thu Thuy %T Explicit iteration methods for a~class of variational inequalities in Banach spaces %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2015 %P 19-26 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2015_10_a1/ %G ru %F IVM_2015_10_a1
Nguyen Buong; Nguen Thi Hong Phuong; Nguyen Thi Thu Thuy. Explicit iteration methods for a~class of variational inequalities in Banach spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2015), pp. 19-26. http://geodesic.mathdoc.fr/item/IVM_2015_10_a1/
[1] Buong Ng., Phuong Ng. Th. H., “Regularization methods for a class of variational inequalities in Banach spaces”, Comput. Math. and Math. Physics, 52:11 (2012), 1487–1496 | DOI | MR
[2] Buong Ng., Phuong Ng. Th. H., “Strong convergence to solution for a class of variational inequalities in Banach spaces by implicit iteration methods”, J. Optim. Theory Appl., 159 (2013), 399–411 | DOI | MR | Zbl
[3] Buong Ng., Duong L. Th., “An explicit iterative algorithm for a class of variational inequalities in Hilbert spaces”, J. Optim. Theory Appl., 151:5 (2011), 513–524 | DOI | MR | Zbl
[4] Takahashi W., “Weak and strong convergence theorems for families of nonexpansive mappings and their applications”, Ann. Univ. Maria Curie-Sklodowska Sect. A, 51 (1997), 277–292 | MR | Zbl
[5] Yao Y., Noor M. A., Liou Y. C., “A new hybrid iterative algorithm for variational inequalities”, Appl. Math. Comput., 216 (2010), 822–829 | DOI | MR | Zbl
[6] Wang Sh., “Convergence and weaker control conditions for hybrid iterative algorithms”, Fixed Point Theory and Appl., 2011 (2011) | DOI | MR
[7] Ceng L. C., Ansari Q. H., Yao J. Ch., “Mann-type steepest-descent and modified hybrid steepest descent methods for variational inequalities in Banach spaces”, Num. Funct. Anal. Optim., 29:9–10 (2008), 987–1033 | DOI | MR
[8] Xu H. K., “An iterative approach to quadratic optimization”, J. Optim. Theory Appl., 116 (2003), 659–678 | DOI | MR | Zbl
[9] Suzuki T., “Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces”, Proc. Amer. Math. Soc., 135 (2007), 99–106 | DOI | MR | Zbl