Crossed product of the canonical anticommutative relations algebra in the Cuntz algebra
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 86-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the Cuntz algebra is a $C^*$-crossed product of the canonical anticommutation relations algebra, generated by a standard recursive fermion system, with the group of integers by endomorphism.
Keywords: Cuntz algebra, crossed product, recursive fermion system, algebra of fields, $C^*$-algebra, isometry.
@article{IVM_2014_8_a8,
     author = {M. A. Aukhadiev and A. S. Nikitin and A. S. Sitdikov},
     title = {Crossed product of the canonical anticommutative relations algebra in the {Cuntz} algebra},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--89},
     publisher = {mathdoc},
     number = {8},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_8_a8/}
}
TY  - JOUR
AU  - M. A. Aukhadiev
AU  - A. S. Nikitin
AU  - A. S. Sitdikov
TI  - Crossed product of the canonical anticommutative relations algebra in the Cuntz algebra
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 86
EP  - 89
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_8_a8/
LA  - ru
ID  - IVM_2014_8_a8
ER  - 
%0 Journal Article
%A M. A. Aukhadiev
%A A. S. Nikitin
%A A. S. Sitdikov
%T Crossed product of the canonical anticommutative relations algebra in the Cuntz algebra
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 86-89
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_8_a8/
%G ru
%F IVM_2014_8_a8
M. A. Aukhadiev; A. S. Nikitin; A. S. Sitdikov. Crossed product of the canonical anticommutative relations algebra in the Cuntz algebra. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 86-89. http://geodesic.mathdoc.fr/item/IVM_2014_8_a8/

[1] Doplicher S., Roberts J. E., “Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics”, Comm. Math. Phys., 131 (1990), 51–107 | DOI | MR | Zbl

[2] Doplicher S. Roberts J. E., “Endomorphisms of $C^*$-algebras”, Ann. Math., 130 (1989), 75–119 | DOI | MR | Zbl

[3] Doplicher S., Roberts J. E., “A new duality theory for compact groups”, Invent. Math., 98 (1989), 157–218 | DOI | MR | Zbl

[4] Doplicher S., Haag R., Roberts J. E., “Local observables and particle statistics. I”, Comm. Math Phys., 23 (1971), 199–230 ; “Local observables and particle statistics. II”, Comm. Math. Phys., 35 (1974), 49–85 | DOI | MR | DOI | MR

[5] Antonevich A. B., Bakhtin V. I., Lebedev A. V., “Skreschennoe proizvedenie $C^*$-algebry na endomorfizm, algebry koeffitsientov i transfer-operatory”, Matem. sb., 202:9 (2011), 3–34 | DOI | MR | Zbl

[6] Abe M., Kawamura K., “Recursive fermion system in Cuntz algebra. I. Embeddings of fermion algebra into Cuntz algebra”, Comm. Math. Phys., 228 (2002), 85–101 | DOI | MR | Zbl

[7] Bratelli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Nauka, M., 1982

[8] Lebedev A. V., Odzijewicz A., “Extensions of $C^*$-algebras by partial isometries”, Math. Sb., 195:7 (2004), 951–982 | DOI | MR | Zbl