Almost contact K\"ahlerian manifolds of constant holomorphic sectional curvature
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 42-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of an almost contact Kählerian structure is introduced. The holomorphic sectional curvature of a distribution of an almost contact Kählerian structure with respect to an interior metric connection is defined. The relation between the $\varphi$-sectional curvature of an almost contact Kählerian manifold and the holomorphic sectional curvature of a distribution of an almost contact Kählerian structure is found.
Keywords: interior connection, extended connection, almost contact Kählerian space, $\varphi$-sectional curvature of an almost contact Kählerian space, holomorphic sectional curvature of a distribution of an almost contact Kählerian structure.
@article{IVM_2014_8_a3,
     author = {S. V. Galaev},
     title = {Almost contact {K\"ahlerian} manifolds of constant holomorphic sectional curvature},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {42--52},
     publisher = {mathdoc},
     number = {8},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_8_a3/}
}
TY  - JOUR
AU  - S. V. Galaev
TI  - Almost contact K\"ahlerian manifolds of constant holomorphic sectional curvature
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 42
EP  - 52
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_8_a3/
LA  - ru
ID  - IVM_2014_8_a3
ER  - 
%0 Journal Article
%A S. V. Galaev
%T Almost contact K\"ahlerian manifolds of constant holomorphic sectional curvature
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 42-52
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_8_a3/
%G ru
%F IVM_2014_8_a3
S. V. Galaev. Almost contact K\"ahlerian manifolds of constant holomorphic sectional curvature. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 42-52. http://geodesic.mathdoc.fr/item/IVM_2014_8_a3/

[1] Bejancu A., “Kähler contact distributions”, J. Geom. Phys., 60:12 (2010), 1958–1967 | DOI | MR | Zbl

[2] Vershik A., Faddeev L., “Differentsialnaya geometriya i lagranzheva mekhanika so svyazyami”, DAN SSSR, 202:3 (1972), 555–557 | Zbl

[3] Bukusheva A. V., Galaev S. V., “Pochti kontaktnye metricheskie struktury, opredelyaemye svyaznostyu nad raspredeleniem s dopustimoi finslerovoi metrikoi”, Izv. Sarat. un-ta. Ser. Matem. Mekhan. Informatika, 12:3 (2012), 17–22

[4] Bukusheva A. V., “O geometrii sloenii na raspredeleniyakh s finslerovoi metrikoi”, Izv. Penzensk. pedagogichesk. un-ta im. V. G. Belinskogo (Seriya fiz.-matem. i tekhn. nauki), 2012, no. 30, 33–38

[5] Vagner V. V., “Geometriya $(n-1)$-mernogo negolonomnogo mnogoobraziya v $n$-mernom prostranstve”, Tr. ceminara po vektornomu i tenzornomu analizu, 5, 1941, 173–255 | MR

[6] Pitis G., Geometry of Kenmotsu manifolds, Publishing House of Transilvania University of Brasov, Brasov, 2007 | MR | Zbl

[7] Blair D. E., Contact manifolds in Riemannian geometry, Springer-Verlag, Berlin–New York, 1976 | MR | Zbl

[8] Malakhaltsev M. A., “Sloeniya s listovymi strukturami”, Itogi nauki i tekhn. Probl. geom., 73, VINITI, 2002, 65–102

[9] Galaev S. V., “Vnutrennyaya geometriya metricheskikh pochti kontaktnykh mnogoobrazovanii”, Izv. Sarat. un-ta. Ser. Matem. Mekhan. Informatika, 12:1 (2012), 16–22 | MR

[10] Vagner V. V., “Geometricheskaya interpretatsiya dvizheniya negolonomnykh dinamicheskikh sistem”, Tr. seminara po vektornomu i tenzornomu analizu, 5, 1941, 301–327 | MR | Zbl