Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2014_8_a3, author = {S. V. Galaev}, title = {Almost contact {K\"ahlerian} manifolds of constant holomorphic sectional curvature}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {42--52}, publisher = {mathdoc}, number = {8}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2014_8_a3/} }
S. V. Galaev. Almost contact K\"ahlerian manifolds of constant holomorphic sectional curvature. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 42-52. http://geodesic.mathdoc.fr/item/IVM_2014_8_a3/
[1] Bejancu A., “Kähler contact distributions”, J. Geom. Phys., 60:12 (2010), 1958–1967 | DOI | MR | Zbl
[2] Vershik A., Faddeev L., “Differentsialnaya geometriya i lagranzheva mekhanika so svyazyami”, DAN SSSR, 202:3 (1972), 555–557 | Zbl
[3] Bukusheva A. V., Galaev S. V., “Pochti kontaktnye metricheskie struktury, opredelyaemye svyaznostyu nad raspredeleniem s dopustimoi finslerovoi metrikoi”, Izv. Sarat. un-ta. Ser. Matem. Mekhan. Informatika, 12:3 (2012), 17–22
[4] Bukusheva A. V., “O geometrii sloenii na raspredeleniyakh s finslerovoi metrikoi”, Izv. Penzensk. pedagogichesk. un-ta im. V. G. Belinskogo (Seriya fiz.-matem. i tekhn. nauki), 2012, no. 30, 33–38
[5] Vagner V. V., “Geometriya $(n-1)$-mernogo negolonomnogo mnogoobraziya v $n$-mernom prostranstve”, Tr. ceminara po vektornomu i tenzornomu analizu, 5, 1941, 173–255 | MR
[6] Pitis G., Geometry of Kenmotsu manifolds, Publishing House of Transilvania University of Brasov, Brasov, 2007 | MR | Zbl
[7] Blair D. E., Contact manifolds in Riemannian geometry, Springer-Verlag, Berlin–New York, 1976 | MR | Zbl
[8] Malakhaltsev M. A., “Sloeniya s listovymi strukturami”, Itogi nauki i tekhn. Probl. geom., 73, VINITI, 2002, 65–102
[9] Galaev S. V., “Vnutrennyaya geometriya metricheskikh pochti kontaktnykh mnogoobrazovanii”, Izv. Sarat. un-ta. Ser. Matem. Mekhan. Informatika, 12:1 (2012), 16–22 | MR
[10] Vagner V. V., “Geometricheskaya interpretatsiya dvizheniya negolonomnykh dinamicheskikh sistem”, Tr. seminara po vektornomu i tenzornomu analizu, 5, 1941, 301–327 | MR | Zbl