Almost contact K\"ahlerian manifolds of constant holomorphic sectional curvature
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 42-52

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of an almost contact Kählerian structure is introduced. The holomorphic sectional curvature of a distribution of an almost contact Kählerian structure with respect to an interior metric connection is defined. The relation between the $\varphi$-sectional curvature of an almost contact Kählerian manifold and the holomorphic sectional curvature of a distribution of an almost contact Kählerian structure is found.
Keywords: interior connection, extended connection, almost contact Kählerian space, $\varphi$-sectional curvature of an almost contact Kählerian space, holomorphic sectional curvature of a distribution of an almost contact Kählerian structure.
@article{IVM_2014_8_a3,
     author = {S. V. Galaev},
     title = {Almost contact {K\"ahlerian} manifolds of constant holomorphic sectional curvature},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {42--52},
     publisher = {mathdoc},
     number = {8},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_8_a3/}
}
TY  - JOUR
AU  - S. V. Galaev
TI  - Almost contact K\"ahlerian manifolds of constant holomorphic sectional curvature
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 42
EP  - 52
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_8_a3/
LA  - ru
ID  - IVM_2014_8_a3
ER  - 
%0 Journal Article
%A S. V. Galaev
%T Almost contact K\"ahlerian manifolds of constant holomorphic sectional curvature
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 42-52
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_8_a3/
%G ru
%F IVM_2014_8_a3
S. V. Galaev. Almost contact K\"ahlerian manifolds of constant holomorphic sectional curvature. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 42-52. http://geodesic.mathdoc.fr/item/IVM_2014_8_a3/