Approximability of soluble groups of finite rank by certain classes of finite groups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 18-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

For soluble groups of finite rank we obtain the necessary and sufficient condition to be a virtually residually finite $p$-group. We also prove that a soluble group $G$ of finite rank is residually $\pi$-finite for some finite set $\pi$ of primes if and only if it has no subgroups of type $Q$ and the torsion radical of $G$ is a finite group.
Keywords: soluble group of finite rank, virtually residually finite $p$-group.
@article{IVM_2014_8_a1,
     author = {D. N. Azarov},
     title = {Approximability of soluble groups of finite rank by certain classes of finite groups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {18--29},
     publisher = {mathdoc},
     number = {8},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_8_a1/}
}
TY  - JOUR
AU  - D. N. Azarov
TI  - Approximability of soluble groups of finite rank by certain classes of finite groups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 18
EP  - 29
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_8_a1/
LA  - ru
ID  - IVM_2014_8_a1
ER  - 
%0 Journal Article
%A D. N. Azarov
%T Approximability of soluble groups of finite rank by certain classes of finite groups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 18-29
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_8_a1/
%G ru
%F IVM_2014_8_a1
D. N. Azarov. Approximability of soluble groups of finite rank by certain classes of finite groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 18-29. http://geodesic.mathdoc.fr/item/IVM_2014_8_a1/

[1] Hirsh K. A., “On infinite soluble groups”, J. London Math. Soc., 27 (1952), 81–85 | DOI | MR

[2] Learner A., “Residual properties of polycyclic groups”, J. Math., 8 (1964), 536–542 | MR | Zbl

[3] Shmelkin A. L., “Politsiklicheskie gruppy”, Sib. matem. zhurn., 9 (1968), 234–235

[4] Gruenberg K. W., “Residual properties of infinite soluble groups”, Proc. Lond. Math. Soc., 7 (1957), 29–52 | DOI | MR

[5] Lennox J., Robinson D., The theory of infinite soluble groups, Clarendon press, Oxford, 2004 | MR | Zbl

[6] Maltsev A. I., “O gruppakh konechnogo ranga”, Matem. sb., 22(64):2 (1948), 351–352 | MR | Zbl

[7] Azarov D. N., “Ob approksimiruemosti konechnymi $p$-gruppami grupp konechnogo ranga”, Vestn. Ivanovsk. un-ta, 2001, no. 3, 103–105

[8] Azarov D. N., “O pochti approksimiruemosti konechnymi $p$-gruppami nekotorykh razreshimykh grupp”, Vestn. Ivanovsk. un-ta, 2012, no. 2, 80–86

[9] Baumslag G., Solitar D., “Some two-generator one-relator non-Hopfian groups”, Bull. Amer. Math. Soc., 68 (1962), 199–201 | DOI | MR | Zbl

[10] Meskin S., “Nonresidually finite one-relator groups”, Trans. Amer. Math. Soc., 164 (1972), 105–114 | DOI | MR | Zbl

[11] Azarov D. N., Sergina E. A., “O pochti approksimiruemosti konechnymi $p$-gruppami nekotorykh grupp Baumslaga–Solitera”, Nauch. tr. Ivanovsk. gos. un-ta, matematika, 6, Ivanovo, 2008, 23–28

[12] Rhemtulla A., Shirvani M., “The residual finiteness of ascending HNN-extensions of certain soluble groups”, Illinois J. of Math., 47:1–2 (2003), 477–484 | MR | Zbl

[13] Hsu T., Wise D., “Ascending HNN-extensions of polycyclic groups are residually finite”, J. Pure Appl. Algebra, 182 (2003), 65–78 | DOI | MR | Zbl

[14] Azarov D. N., “O pochti approksimiruemosti konechnymi $p$-gruppami niskhodyaschikh HNN-rasshirenii grupp”, Chebyshevskii sb., 13:1 (2012), 9–19 | MR

[15] Plotkin B. I., Gruppy avtomorfizmov algebraicheskikh sistem, Nauka, M., 1966 | MR | Zbl

[16] Maltsev A. I., “O gomomorfizmakh na konechnye gruppy”, Uchen. zap. Ivanovsk. gos. ped. in-ta, 18:5 (1958), 49–60

[17] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1972 | MR | Zbl