Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2014_6_a6, author = {S. I. Kalmykov and D. B. Karp}, title = {On logarithmic concavity of series in gamma ratios}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {70--77}, publisher = {mathdoc}, number = {6}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2014_6_a6/} }
S. I. Kalmykov; D. B. Karp. On logarithmic concavity of series in gamma ratios. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2014), pp. 70-77. http://geodesic.mathdoc.fr/item/IVM_2014_6_a6/
[1] Karp D. B., Sitnik S. M., “Log-convexity and log-concavity of hypergeometric-like functions”, J. Math. Anal. Appl., 364:2 (2010), 384–394 | DOI | MR | Zbl
[2] Karp D. B., “Neravenstva Turana dlya funktsii Kummera ot sdviga po oboim parametram”, Zap. nauchn. semin. POMI, 383, 2010, 110–125 | MR
[3] Kalmykov S. I., Karp D. B., “Log-concavity for series in reciprocal gamma functions”, Int. Transforms and Special func., 24:11 (2013), 859–872 | DOI | MR | Zbl
[4] Kalmykov S. I., Karp D. B., “Log-convexity and log-concavity for series in gamma ratios and applications”, J. Math. Anal. Appl., 406 (2013), 400–418 | DOI | MR
[5] Karp D. B., Sitnik S. M., “Inequalities and monotonicity of ratios for generalized hypergeometric function”, J. Approxim. Theory, 161 (2009), 337–352 | DOI | MR | Zbl
[6] Sitnik S. M., “Neravenstva dlya funktsii Besselya”, Dokl. RAN, 340:1 (1995), 29–32 | MR | Zbl
[7] Sitnik S. M., “Faktorizatsiya i otsenki norm v vesovykh lebegovykh prostranstvakh operatorov Bushmana–Erdeii”, DAN SSSR, 320:6 (1991), 1326–1330 | MR | Zbl
[8] Gosper R. W., “Decision procedures for indefinite hypergeometric summation”, Proc. Nat. Acad. Sci. USA, 75 (1978), 40–42 | DOI | MR | Zbl
[9] Petkovšek M., Wilf H. S., Zeilberger D., $A=B$, A. K. Peters, Wellesley, MA, 1996 | MR | Zbl
[10] Niculescu C. P., Persson L.-E., Convex functions and their applications. A contemporary approach, Springer Science+Business Media, Inc., 2006 | MR | Zbl
[11] Miller K. S., Samko S., “Completely monotonic functions”, Integr. Transf. and Spec. Funct., 12:4 (2001), 389–402 | DOI | MR | Zbl
[12] Schilling R. L., Song R., Vondraček Z., Bernstein functions. Theory and applications, Studies in Mathematics, 37, Walter de Gruyter, 2010 | MR | Zbl
[13] Andrews G. E., Askey R., Roy R., Special functions, Cambridge University Press, 1999 | MR | Zbl