On logarithmic concavity of series in gamma ratios
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2014), pp. 70-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find two-sided bounds and prove non-negativeness Taylor coefficients for the Turán determinants power series with coefficients involving the ratio of gamma-functions. We consider such series as functions of simultaneous shifts of the arguments of the gamma-functions located in the numerator and the denominator. These results are then applied to derive new inequalities for the Gauss hypergeometric function, the incomplete normalized beta-function and the generalized hypergeometric series. This communication continues the research of various authors who investigated logarithmic convexity and concavity of hypergeometric functions in parameters.
Keywords: gamma-function, beta-function, Turán inequalities, logarithmic concavity, generalized hypergeometric functions.
@article{IVM_2014_6_a6,
     author = {S. I. Kalmykov and D. B. Karp},
     title = {On logarithmic concavity of series in gamma ratios},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {70--77},
     publisher = {mathdoc},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_6_a6/}
}
TY  - JOUR
AU  - S. I. Kalmykov
AU  - D. B. Karp
TI  - On logarithmic concavity of series in gamma ratios
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 70
EP  - 77
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_6_a6/
LA  - ru
ID  - IVM_2014_6_a6
ER  - 
%0 Journal Article
%A S. I. Kalmykov
%A D. B. Karp
%T On logarithmic concavity of series in gamma ratios
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 70-77
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_6_a6/
%G ru
%F IVM_2014_6_a6
S. I. Kalmykov; D. B. Karp. On logarithmic concavity of series in gamma ratios. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2014), pp. 70-77. http://geodesic.mathdoc.fr/item/IVM_2014_6_a6/

[1] Karp D. B., Sitnik S. M., “Log-convexity and log-concavity of hypergeometric-like functions”, J. Math. Anal. Appl., 364:2 (2010), 384–394 | DOI | MR | Zbl

[2] Karp D. B., “Neravenstva Turana dlya funktsii Kummera ot sdviga po oboim parametram”, Zap. nauchn. semin. POMI, 383, 2010, 110–125 | MR

[3] Kalmykov S. I., Karp D. B., “Log-concavity for series in reciprocal gamma functions”, Int. Transforms and Special func., 24:11 (2013), 859–872 | DOI | MR | Zbl

[4] Kalmykov S. I., Karp D. B., “Log-convexity and log-concavity for series in gamma ratios and applications”, J. Math. Anal. Appl., 406 (2013), 400–418 | DOI | MR

[5] Karp D. B., Sitnik S. M., “Inequalities and monotonicity of ratios for generalized hypergeometric function”, J. Approxim. Theory, 161 (2009), 337–352 | DOI | MR | Zbl

[6] Sitnik S. M., “Neravenstva dlya funktsii Besselya”, Dokl. RAN, 340:1 (1995), 29–32 | MR | Zbl

[7] Sitnik S. M., “Faktorizatsiya i otsenki norm v vesovykh lebegovykh prostranstvakh operatorov Bushmana–Erdeii”, DAN SSSR, 320:6 (1991), 1326–1330 | MR | Zbl

[8] Gosper R. W., “Decision procedures for indefinite hypergeometric summation”, Proc. Nat. Acad. Sci. USA, 75 (1978), 40–42 | DOI | MR | Zbl

[9] Petkovšek M., Wilf H. S., Zeilberger D., $A=B$, A. K. Peters, Wellesley, MA, 1996 | MR | Zbl

[10] Niculescu C. P., Persson L.-E., Convex functions and their applications. A contemporary approach, Springer Science+Business Media, Inc., 2006 | MR | Zbl

[11] Miller K. S., Samko S., “Completely monotonic functions”, Integr. Transf. and Spec. Funct., 12:4 (2001), 389–402 | DOI | MR | Zbl

[12] Schilling R. L., Song R., Vondraček Z., Bernstein functions. Theory and applications, Studies in Mathematics, 37, Walter de Gruyter, 2010 | MR | Zbl

[13] Andrews G. E., Askey R., Roy R., Special functions, Cambridge University Press, 1999 | MR | Zbl