Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2014_6_a0, author = {E. G. Ganenkova}, title = {On a set of ambiguous points of a~functions in the~$\mathbb R^n$}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--8}, publisher = {mathdoc}, number = {6}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2014_6_a0/} }
E. G. Ganenkova. On a set of ambiguous points of a~functions in the~$\mathbb R^n$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2014), pp. 3-8. http://geodesic.mathdoc.fr/item/IVM_2014_6_a0/
[1] Bagemihl F., “Curvilinear cluster sets of arbitrary functions”, Proc. Nat. Acad. Sci. USA, 41:6 (1955), 379–382 | DOI | MR | Zbl
[2] Piranian G., “Ambiguous points of a function continuous inside a sphere”, Michigan Math. J., 4:2 (1957), 151–152 | DOI | MR | Zbl
[3] Bagemihl F., “Ambiguous points of a function harmonic inside a sphere”, Michigan Math. J., 4:2 (1957), 153–154 | DOI | MR | Zbl
[4] Church P. T., “Ambiguous points of a function homeomorphic inside a sphere”, Michigan Math. J., 4:2 (1957), 155–156 | DOI | MR | Zbl
[5] Rippon P. J., “Ambiguous points of functions in the unit ball of euclidean space”, Bull. London Math. Soc., 15:4 (1983), 336–338 | DOI | MR | Zbl
[6] Ganenkova E. G., “Teorema Beidzhmila dlya ostova polikruga i ee prilozheniya”, Izv. vuzov. Matem., 2011, no. 6, 35–43 | MR | Zbl