On a set of ambiguous points of a~functions in the~$\mathbb R^n$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2014), pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that an arbitrary function in the open unit disk can have at most countable set of ambiguous points. Point $\zeta$ on the unit circle is an ambiguous point of a function if there exist two Jordan arcs, lying in the unit ball, except the endpoint $\zeta,$ such that cluster sets of function along these arcs are disjoint. We investigate whether it is possible to modify the notion of ambiguous point to keep the analogous result true for functions defined in the $n$-dimensional Euclidean unit ball.
Keywords: cluster set, ambiguous point.
@article{IVM_2014_6_a0,
     author = {E. G. Ganenkova},
     title = {On a set of ambiguous points of a~functions in the~$\mathbb R^n$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--8},
     publisher = {mathdoc},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_6_a0/}
}
TY  - JOUR
AU  - E. G. Ganenkova
TI  - On a set of ambiguous points of a~functions in the~$\mathbb R^n$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 3
EP  - 8
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_6_a0/
LA  - ru
ID  - IVM_2014_6_a0
ER  - 
%0 Journal Article
%A E. G. Ganenkova
%T On a set of ambiguous points of a~functions in the~$\mathbb R^n$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 3-8
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_6_a0/
%G ru
%F IVM_2014_6_a0
E. G. Ganenkova. On a set of ambiguous points of a~functions in the~$\mathbb R^n$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2014), pp. 3-8. http://geodesic.mathdoc.fr/item/IVM_2014_6_a0/

[1] Bagemihl F., “Curvilinear cluster sets of arbitrary functions”, Proc. Nat. Acad. Sci. USA, 41:6 (1955), 379–382 | DOI | MR | Zbl

[2] Piranian G., “Ambiguous points of a function continuous inside a sphere”, Michigan Math. J., 4:2 (1957), 151–152 | DOI | MR | Zbl

[3] Bagemihl F., “Ambiguous points of a function harmonic inside a sphere”, Michigan Math. J., 4:2 (1957), 153–154 | DOI | MR | Zbl

[4] Church P. T., “Ambiguous points of a function homeomorphic inside a sphere”, Michigan Math. J., 4:2 (1957), 155–156 | DOI | MR | Zbl

[5] Rippon P. J., “Ambiguous points of functions in the unit ball of euclidean space”, Bull. London Math. Soc., 15:4 (1983), 336–338 | DOI | MR | Zbl

[6] Ganenkova E. G., “Teorema Beidzhmila dlya ostova polikruga i ee prilozheniya”, Izv. vuzov. Matem., 2011, no. 6, 35–43 | MR | Zbl