Upper bounds on the formula size of symmetric Boolean functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2014), pp. 38-52
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that complexity of implementation of the counting function of $n$ Boolean variables with binary formulae is at most $n^{3.03}$ and is at most $n^{4.47}$ with respect to DeMorgan formulae. Hence, the same bounds hold for the formula size of any threshold symmetric function of $n$ variables, particularly, for majority function. The following bounds are proved for the formula size of any symmetric Boolean function of $n$ variables: $n^{3.04}$ with respect to binary formulae and $n^{4.48}$ with respect to DeMorgan formulae. A proof is based on modular arithmetic.
Keywords:
formula size, symmetric Boolean functions, majority function
Mots-clés : multiplication.
Mots-clés : multiplication.
@article{IVM_2014_5_a3,
author = {I. S. Sergeev},
title = {Upper bounds on the formula size of symmetric {Boolean} functions},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {38--52},
publisher = {mathdoc},
number = {5},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2014_5_a3/}
}
I. S. Sergeev. Upper bounds on the formula size of symmetric Boolean functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2014), pp. 38-52. http://geodesic.mathdoc.fr/item/IVM_2014_5_a3/