Generalization of a~notion of grand Lebesgue space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2014), pp. 42-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce families of weighted grand Lebesgue spaces which generalize weighted grand Lebesgue spaces (known also as Iwaniec–Sbordone spaces). The generalization admits a possibility of expanding usual (weighted) Lebesgue spaces to grand spaces by various ways by means of additional functional parameter. For such generalized grand spaces we prove a theorem on the boundedness of linear operators under the information of their boundedness in the usual weighted Lebesgue spaces. By means of this theorem we prove the boundedness of the Hardy–Littlewood maximal operator and Calderon–Zygmund singular operators win the weighted grand spaces under consideration.
Mots-clés : grand spaces
Keywords: generalized Lebesgue grand spaces, interpolation theorem with change of measure, maximal operator, Calderon–Zygmund operator.
@article{IVM_2014_4_a4,
     author = {S. M. Umarkhadzhiev},
     title = {Generalization of a~notion of grand {Lebesgue} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {42--51},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_4_a4/}
}
TY  - JOUR
AU  - S. M. Umarkhadzhiev
TI  - Generalization of a~notion of grand Lebesgue space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 42
EP  - 51
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_4_a4/
LA  - ru
ID  - IVM_2014_4_a4
ER  - 
%0 Journal Article
%A S. M. Umarkhadzhiev
%T Generalization of a~notion of grand Lebesgue space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 42-51
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_4_a4/
%G ru
%F IVM_2014_4_a4
S. M. Umarkhadzhiev. Generalization of a~notion of grand Lebesgue space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2014), pp. 42-51. http://geodesic.mathdoc.fr/item/IVM_2014_4_a4/

[1] Iwaniec T., Sbordone C., “On the integrability of the Jacobian under minimal hypotheses”, Arch. Rational Mech. Anal., 119 (1992), 129–143 | DOI | MR | Zbl

[2] Capone C., Fiorenza A., “On small Lebesgue spaces”, J. Function Spaces and Appl., 3 (2005), 73–89 | DOI | MR | Zbl

[3] Di Fratta G., Fiorenza A., “A direct approach to the duality of grand and small Lebesgue spaces”, Nonlinear Anal.: Theory, Methods and Appl., 70:7 (2009), 2582–2592 | DOI | MR | Zbl

[4] Fiorenza A., “Duality and reflexivity in grand Lebesgue spaces”, Collect. Math., 51:2 (2000), 131–148 | MR | Zbl

[5] Fiorenza A., Gupta B., Jain P., “The maximal theorem in weighted grand Lebesgue spaces”, Studia Math., 188:2 (2008), 123–133 | DOI | MR | Zbl

[6] Fiorenza A., Karadzhov G. E., “Grand and small Lebesgue spaces and their analogs”, J. Anal. and Appl., 23:4 (2004), 657–681 | MR | Zbl

[7] Fiorenza A., Rakotoson J. M., “Petits espaces de Lebesgue et quelques applications”, C. R. Math. Acad. Sci. Paris, 334:1 (2002), 23–26 | DOI | MR | Zbl

[8] Greco L., Iwaniec T., Sbordone C., “Inverting the $p$-harmonic operator”, Manuscripta Math., 92 (1997), 249–258 | DOI | MR | Zbl

[9] Kokilashvili V., “Boundedness criterion for the Cauchy singular integral operator in weighted grand Lebesgue spaces and application to the Riemann problem”, Proc. A. Razmadze Math. Inst., 151, 2009, 129–133 | MR | Zbl

[10] Kokilashvili V., “The Riemann boundary value problem for analytic functions in the frame of grand $L^p$ spaces”, Bull. Georgian Nat. Acad. Sci., 4:1 (2010), 5–7 | MR | Zbl

[11] Kokilashvili V., Meskhi A., “A note on the boundedness of the Hilbert transform in weighted grand Lebesgue spaces”, Georgian Math. J., 16:3 (2009), 547–551 | MR | Zbl

[12] Kokilashvili V., Samko S., “Boundedness of weighted singular integral operators on a Carleson curves in grand Lebesgue spaces”, ICNAAM: Intern. Conf. Numer. Anal. Appl. Math., AIP Confer. Proc., 1281, 2010, 490–493 | DOI

[13] Meskhi A., “Maximal functions and singular integrals in Morrey spaces associated with grand Lebesgue spaces”, Proc. A. Razmadze Math. Inst., 151, 2009, 139–143 | MR | Zbl

[14] Samko S. G., Umarkhadzhiev S. M., “On Iwaniec–Sbordone spaces on sets which may have infinite measure”, Azerb. J. Math., 1:1 (2011), 67–84 | MR | Zbl

[15] Samko S. G., Umarkhadzhiev S. M., “On Iwaniec–Sbordone spaces on sets which may have infinite measure: addendum”, Azerb. J. Math., 1:2 (2011), 143–144 | MR | Zbl

[16] Kokilashvili V., “Boundedness criteria for singular integrals in weighted grand Lebesgue spaces”, J. Math. Sci., 170:1 (2010), 20–33 | DOI | MR

[17] Kokilashvili V., Samko S., “Boundedness of weighted singular integral operators in grand Lebesgue spaces”, Georgian Math. J., 18:2 (2011), 259–269 | MR | Zbl

[18] Berg I., Lëfstrëm I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[19] Stein E. M., Weiss G., “Interpolation of operators with change of measures”, Trans. Amer. Math. Soc., 87 (1958), 159–172 | DOI | MR | Zbl

[20] Coifman R. R., Meyer Y., Au delà des opérateurs pseudo-differentiels, Asterisque, 57, 1978 | MR | Zbl

[21] Muckenhoupt B., “Weighted norm inequalities for the Hardy maximal function”, Trans. Amer. Math. Soc., 165 (1972), 207–226 | DOI | MR | Zbl

[22] Duoandikoetxea J., Fourier Analysis, Amer. Math. Soc., Graduate Studies, 29, 2001 | MR | Zbl

[23] de la Torre A., “On the adjoint of the maximal function”, Function spaces, differential operators and nonlinear analysis (Paseky nan Jizerou, 1995), Prometheus, Prague, 1996, 189–194 | MR | Zbl

[24] Lacey M., Sawyer E., Uriarte-Tuero I., Two weight inequalities for discrete positive operators, 2010, arXiv: 0911.3437