Definable relations in structures of Turing degrees
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2014), pp. 77-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate questions about the definability of classes of $n$-computably enumerable (c.e.) sets and degrees in the Ershov difference hierarchy. It is proved that the class of all c.e. sets it is definable under the set inclusion $\subseteq$ in all finite levels of the difference hierarchy. It is also proved the definability of all $m$-c.e. degrees in each higher level of the hierarchy. Besides, for each level $n$, $n\ge2$, of the hierarchy a definable non-trivial subset of $n$-c.e. degrees is established.
Keywords: computably enumerable sets, Turing degrees of unsolvability, high degrees, major subsets.
Mots-clés : definable relations
@article{IVM_2014_2_a10,
     author = {M. M. Arslanov},
     title = {Definable relations in structures of {Turing} degrees},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {77--81},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_2_a10/}
}
TY  - JOUR
AU  - M. M. Arslanov
TI  - Definable relations in structures of Turing degrees
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 77
EP  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_2_a10/
LA  - ru
ID  - IVM_2014_2_a10
ER  - 
%0 Journal Article
%A M. M. Arslanov
%T Definable relations in structures of Turing degrees
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 77-81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_2_a10/
%G ru
%F IVM_2014_2_a10
M. M. Arslanov. Definable relations in structures of Turing degrees. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2014), pp. 77-81. http://geodesic.mathdoc.fr/item/IVM_2014_2_a10/

[1] Cholak P., Automorphisms of the lattice of recursively enumerable sets, Mem. Amer. Math. Soc., 113, no. 541, 1995 | MR

[2] Harrington L., Soare R. I., “The $\Delta_3^0$-automorphism method and noninvariant classes of degrees”, J. Amer. Math. Soc., 9 (1996), 617–666 | DOI | MR | Zbl

[3] Cholak P., Harrington L., “On the definability of the double jump in the computably enumerable sets”, J. Math. Logic, 2 (2002), 261–296 | DOI | MR | Zbl

[4] Martin D. A., “Classes of recursively enumerable sets and degrees of unsolvability”, Z. Math. Logik Grundl. Math., 12 (1966), 295–310 | DOI | MR | Zbl

[5] Epstein R., “The nonlow computably enumerable degrees are not definable in $\mathcal E$”, Trans. Amer. Math. Soc., 365 (2013), 1305–1345 | DOI | MR | Zbl

[6] Lempp S., Nies A., “Differences of computably enumerable sets”, Math. Logic Quarterly, 46 (2000), 555–561 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[7] Sacks G. E., “On the degrees less than $0'$”, Ann. Math. (2), 77 (1963), 211–231 | DOI | MR | Zbl

[8] Soare R. I., Recursively enumerable sets and degrees, Springer-Verlag, Berlin, 1987 | MR

[9] Arslanov M. M., “The Ershov hierarchy”, Computability in Context, Computation and Logic in the Real World, eds. S. B. Cooper, A. Sorbi, Imperial College Press, London, 2011, 49–100 | DOI | MR | Zbl

[10] Lerman M., “Some theorems on $r$-maximal sets and major subsets of recursively enumerable sets”, J. Symbolic Logic, 36 (1971), 193–215 | DOI | MR | Zbl