Linear equations of the Sobolev type with integral delay operator
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2014), pp. 71-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish sufficient conditions for the local and global solvability of initial problems for a class of linear operator-differential equations of the first order in a Banach space. Equations are assumed to have a degenerate operator at the derivative and an integral delay operator. We apply methods of the theory of degenerate semigroups of operators and the contraction mapping theorem. As examples illustrating the general results we consider the evolution equation for a free surface of a filtered liquid with a delay and a linearized quasistationary system of equations for a phase field with a delay.
Keywords: delay equation, integrodifferential equation, contraction mapping theorem, degenerate semigroup of operators.
Mots-clés : Sobolev-type equation
@article{IVM_2014_1_a6,
     author = {V. E. Fedorov and E. A. Omel'chenko},
     title = {Linear equations of the {Sobolev} type with integral delay operator},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {71--81},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_1_a6/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - E. A. Omel'chenko
TI  - Linear equations of the Sobolev type with integral delay operator
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 71
EP  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_1_a6/
LA  - ru
ID  - IVM_2014_1_a6
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A E. A. Omel'chenko
%T Linear equations of the Sobolev type with integral delay operator
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 71-81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_1_a6/
%G ru
%F IVM_2014_1_a6
V. E. Fedorov; E. A. Omel'chenko. Linear equations of the Sobolev type with integral delay operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2014), pp. 71-81. http://geodesic.mathdoc.fr/item/IVM_2014_1_a6/

[1] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR

[2] Favini A., Yagi A., Degenerate differential equations in Banach spaces, Marcel Dekker Inc., New York–Basel–Hong Kong, 1999 | MR | Zbl

[3] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl

[4] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Elementy sovremennoi teorii funktsionalno-differentsialnykh uravnenii. Metody i prilozheniya, In-t kompyuternykh issledovanii, M., 2002

[5] Fedorov V. E., Omelchenko E. A., “On solvability of some classes of Sobolev type equations with delay”, Functional Diff. Equat., 18:3–4 (2011), 187–199

[6] Fedorov V. E., Omelchenko E. A., “Neodnorodnye lineinye uravneniya sobolevskogo tipa s zapazdyvaniem”, Sib. matem. zhurn., 53:2 (2012), 418–429 | MR | Zbl

[7] Abdullaev A. R., Burmistrova A. B., “Ob odnoi skheme issledovaniya na razreshimost rezonansnykh kraevykh zadach”, Izv. vuzov. Matem., 1996, no. 11, 14–22 | MR | Zbl

[8] Boichuk A. A., “Postroenie reshenii dvukhtochechnoi kraevoi zadachi dlya slabovozmuschennykh nelineinykh sistem v kriticheskikh sluchayakh”, Ukr. matem. zhurn., 41:10 (1989), 1416–1420 | MR

[9] Furi M., Pera M. P., “An elementary approach to boundary value problems at resonance”, Nonlinear Anal.: Theory, Meth. and Appl., 4:6 (1980), 1081–1089 | DOI | MR | Zbl

[10] Landesman F., Lazer A., “Non-linear perturbation of linear elliptic boundary value problems at resonance”, J. Math. Mech., 19:7 (1970), 609–623 | MR | Zbl

[11] Przeradzki B., “Nonlinear boundary value problems at resonance for differential equations in Banach spaces”, Math. Slovaca, 45:2 (1995), 139–153 | MR | Zbl

[12] Fedorov V. E., “Vyrozhdennye silno nepreryvnye polugruppy operatorov”, Algebra i analiz, 12:3 (2000), 173–200 | MR | Zbl

[13] Fedorov V. E., “Svoistva psevdorezolvent i usloviya suschestvovaniya vyrozhdennykh polugrupp operatorov”, Vestnik Chelyab. gos. un-ta. Ser. matem., mekhan., informatika, 11:20 (2009), 12–19 | MR

[14] Showalter R. E., “Partial differential equations of Sobolev–Galperin type”, Pacific J. Math., 31:3 (1963), 787–793 | DOI | MR

[15] Fedorov V. E., Ruzakova O. A., “O razreshimosti vozmuschennykh uravnenii sobolevskogo tipa”, Algebra i analiz, 20:4 (2008), 189–217 | MR | Zbl

[16] Dzektser E. S., “Obobschenie uravneniya dvizheniya gruntovykh vod so svobodnoi poverkhnostyu”, DAN SSSR, 202:5 (1972), 1031–1033

[17] Plotnikov P. I., Starovoitov V. N., “Zadacha Stefana s poverkhnostnym natyazheniem kak predel modeli fazovogo polya”, Differents. uravneniya, 29:3 (1993), 461–471 | MR | Zbl

[18] Plotnikov P. I., Klepacheva A. V., “Uravneniya fazovogo polya i gradientnye potoki marginalnykh funktsii”, Sib. matem. zhurn., 42:3 (2001), 651–669 | MR | Zbl

[19] Fedorov V. E., Urazaeva A. V., “Obratnaya zadacha dlya odnogo klassa singulyarnykh lineinykh operatorno-differentsialnykh uravnenii”, Tr. Voronezhsk. zimn. matem. shkoly, Izd-vo Voronezhsk. un-ta, Voronezh, 2004, 161–172