Linear equations of the Sobolev type with integral delay operator
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2014), pp. 71-81

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish sufficient conditions for the local and global solvability of initial problems for a class of linear operator-differential equations of the first order in a Banach space. Equations are assumed to have a degenerate operator at the derivative and an integral delay operator. We apply methods of the theory of degenerate semigroups of operators and the contraction mapping theorem. As examples illustrating the general results we consider the evolution equation for a free surface of a filtered liquid with a delay and a linearized quasistationary system of equations for a phase field with a delay.
Keywords: delay equation, integrodifferential equation, contraction mapping theorem, degenerate semigroup of operators.
Mots-clés : Sobolev-type equation
@article{IVM_2014_1_a6,
     author = {V. E. Fedorov and E. A. Omel'chenko},
     title = {Linear equations of the {Sobolev} type with integral delay operator},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {71--81},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_1_a6/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - E. A. Omel'chenko
TI  - Linear equations of the Sobolev type with integral delay operator
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 71
EP  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_1_a6/
LA  - ru
ID  - IVM_2014_1_a6
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A E. A. Omel'chenko
%T Linear equations of the Sobolev type with integral delay operator
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 71-81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_1_a6/
%G ru
%F IVM_2014_1_a6
V. E. Fedorov; E. A. Omel'chenko. Linear equations of the Sobolev type with integral delay operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2014), pp. 71-81. http://geodesic.mathdoc.fr/item/IVM_2014_1_a6/