Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2014_1_a6, author = {V. E. Fedorov and E. A. Omel'chenko}, title = {Linear equations of the {Sobolev} type with integral delay operator}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {71--81}, publisher = {mathdoc}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2014_1_a6/} }
TY - JOUR AU - V. E. Fedorov AU - E. A. Omel'chenko TI - Linear equations of the Sobolev type with integral delay operator JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2014 SP - 71 EP - 81 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2014_1_a6/ LA - ru ID - IVM_2014_1_a6 ER -
V. E. Fedorov; E. A. Omel'chenko. Linear equations of the Sobolev type with integral delay operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2014), pp. 71-81. http://geodesic.mathdoc.fr/item/IVM_2014_1_a6/
[1] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR
[2] Favini A., Yagi A., Degenerate differential equations in Banach spaces, Marcel Dekker Inc., New York–Basel–Hong Kong, 1999 | MR | Zbl
[3] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl
[4] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Elementy sovremennoi teorii funktsionalno-differentsialnykh uravnenii. Metody i prilozheniya, In-t kompyuternykh issledovanii, M., 2002
[5] Fedorov V. E., Omelchenko E. A., “On solvability of some classes of Sobolev type equations with delay”, Functional Diff. Equat., 18:3–4 (2011), 187–199
[6] Fedorov V. E., Omelchenko E. A., “Neodnorodnye lineinye uravneniya sobolevskogo tipa s zapazdyvaniem”, Sib. matem. zhurn., 53:2 (2012), 418–429 | MR | Zbl
[7] Abdullaev A. R., Burmistrova A. B., “Ob odnoi skheme issledovaniya na razreshimost rezonansnykh kraevykh zadach”, Izv. vuzov. Matem., 1996, no. 11, 14–22 | MR | Zbl
[8] Boichuk A. A., “Postroenie reshenii dvukhtochechnoi kraevoi zadachi dlya slabovozmuschennykh nelineinykh sistem v kriticheskikh sluchayakh”, Ukr. matem. zhurn., 41:10 (1989), 1416–1420 | MR
[9] Furi M., Pera M. P., “An elementary approach to boundary value problems at resonance”, Nonlinear Anal.: Theory, Meth. and Appl., 4:6 (1980), 1081–1089 | DOI | MR | Zbl
[10] Landesman F., Lazer A., “Non-linear perturbation of linear elliptic boundary value problems at resonance”, J. Math. Mech., 19:7 (1970), 609–623 | MR | Zbl
[11] Przeradzki B., “Nonlinear boundary value problems at resonance for differential equations in Banach spaces”, Math. Slovaca, 45:2 (1995), 139–153 | MR | Zbl
[12] Fedorov V. E., “Vyrozhdennye silno nepreryvnye polugruppy operatorov”, Algebra i analiz, 12:3 (2000), 173–200 | MR | Zbl
[13] Fedorov V. E., “Svoistva psevdorezolvent i usloviya suschestvovaniya vyrozhdennykh polugrupp operatorov”, Vestnik Chelyab. gos. un-ta. Ser. matem., mekhan., informatika, 11:20 (2009), 12–19 | MR
[14] Showalter R. E., “Partial differential equations of Sobolev–Galperin type”, Pacific J. Math., 31:3 (1963), 787–793 | DOI | MR
[15] Fedorov V. E., Ruzakova O. A., “O razreshimosti vozmuschennykh uravnenii sobolevskogo tipa”, Algebra i analiz, 20:4 (2008), 189–217 | MR | Zbl
[16] Dzektser E. S., “Obobschenie uravneniya dvizheniya gruntovykh vod so svobodnoi poverkhnostyu”, DAN SSSR, 202:5 (1972), 1031–1033
[17] Plotnikov P. I., Starovoitov V. N., “Zadacha Stefana s poverkhnostnym natyazheniem kak predel modeli fazovogo polya”, Differents. uravneniya, 29:3 (1993), 461–471 | MR | Zbl
[18] Plotnikov P. I., Klepacheva A. V., “Uravneniya fazovogo polya i gradientnye potoki marginalnykh funktsii”, Sib. matem. zhurn., 42:3 (2001), 651–669 | MR | Zbl
[19] Fedorov V. E., Urazaeva A. V., “Obratnaya zadacha dlya odnogo klassa singulyarnykh lineinykh operatorno-differentsialnykh uravnenii”, Tr. Voronezhsk. zimn. matem. shkoly, Izd-vo Voronezhsk. un-ta, Voronezh, 2004, 161–172