Mots-clés : equation, Poincaré mapping.
@article{IVM_2014_1_a2,
author = {V. G. Il'ichev and A. A. Zelenin},
title = {Two-party graphs and monotonicity properties of the {Poincar\'e} mapping},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {31--40},
year = {2014},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2014_1_a2/}
}
V. G. Il'ichev; A. A. Zelenin. Two-party graphs and monotonicity properties of the Poincaré mapping. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2014), pp. 31-40. http://geodesic.mathdoc.fr/item/IVM_2014_1_a2/
[1] Ilichev V. G., “Nasleduemye svoistva neavtonomnykh dinamicheskikh sistem i ikh prilozhenie v modelyakh konkurentsii”, Izv. vuzov. Matem., 2002, no. 6, 26–36 | MR | Zbl
[2] Ilichev V. G., Ustoichivost, adaptatsiya i upravlenie v ekologicheskikh sistemakh, Fizmatlit, M., 2009
[3] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR
[4] Ilichev V. G., “Printsipy nasledovaniya v dinamicheskikh sistemakh i ego prilozhenie v modelyakh ekologii”, Differents. uravneniya, 47:9 (2011), 1247–1257 | MR | Zbl
[5] Harary F., “On the notion of balance of signed graph”, Michigan Math. J., 2:2 (1953/1954), 143–146 | DOI | MR
[6] Poberts F. S., Diskretnye matematicheskie modeli s prilozheniyami k sotsialnym, biologicheskim i ekologicheskim zadacham, Nauka, M., 1986 | MR
[7] Arnold V. I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1984 | MR