Two-party graphs and monotonicity properties of the Poincar\'e mapping
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2014), pp. 31-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

The local differential of a system of nonlinear differential equations with a $T$-periodic right-hand side is representable as a directed sign interaction graph. Within the class of balanced graphs, where all paths between two fixed vertices have the same signs, it is possible to estimate the sign structure of the differential of the global Poincaré mapping (a shift in time $T$). In this case all vertices of a strongly connected graph naturally break into two sets (two parties). As appeared, the influence of variables within one party is positive, while that of variables from different parties is negative. Even having simplified the structure of a local two-party graph (by eliminating its edges), one can still exactly describe the sign structure of the differential of the Poincare mapping. The obtained results are applicable in the mathematical competition theory.
Keywords: graph, signs of paths, two-party property, strong connectivity, monotonicity, Poincaré mapping.
Mots-clés : equation
@article{IVM_2014_1_a2,
     author = {V. G. Il'ichev and A. A. Zelenin},
     title = {Two-party graphs and monotonicity properties of the {Poincar\'e} mapping},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {31--40},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_1_a2/}
}
TY  - JOUR
AU  - V. G. Il'ichev
AU  - A. A. Zelenin
TI  - Two-party graphs and monotonicity properties of the Poincar\'e mapping
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 31
EP  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_1_a2/
LA  - ru
ID  - IVM_2014_1_a2
ER  - 
%0 Journal Article
%A V. G. Il'ichev
%A A. A. Zelenin
%T Two-party graphs and monotonicity properties of the Poincar\'e mapping
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 31-40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_1_a2/
%G ru
%F IVM_2014_1_a2
V. G. Il'ichev; A. A. Zelenin. Two-party graphs and monotonicity properties of the Poincar\'e mapping. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2014), pp. 31-40. http://geodesic.mathdoc.fr/item/IVM_2014_1_a2/

[1] Ilichev V. G., “Nasleduemye svoistva neavtonomnykh dinamicheskikh sistem i ikh prilozhenie v modelyakh konkurentsii”, Izv. vuzov. Matem., 2002, no. 6, 26–36 | MR | Zbl

[2] Ilichev V. G., Ustoichivost, adaptatsiya i upravlenie v ekologicheskikh sistemakh, Fizmatlit, M., 2009

[3] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR

[4] Ilichev V. G., “Printsipy nasledovaniya v dinamicheskikh sistemakh i ego prilozhenie v modelyakh ekologii”, Differents. uravneniya, 47:9 (2011), 1247–1257 | MR | Zbl

[5] Harary F., “On the notion of balance of signed graph”, Michigan Math. J., 2:2 (1953/1954), 143–146 | DOI | MR

[6] Poberts F. S., Diskretnye matematicheskie modeli s prilozheniyami k sotsialnym, biologicheskim i ekologicheskim zadacham, Nauka, M., 1986 | MR

[7] Arnold V. I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1984 | MR