Estimates for some convolution operators with singularities in their kernels on a~sphere and their applications
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2014), pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study convolution operators, whose kernels have singularities on the unit sphere. For these operators we obtain $H^p$-$H^q$ estimates, where $p$ is less than or equals $q$, and prove their sharpness. To this end, we develop a new method that uses special representations for the symbol of such an operator as the sum of some oscillatory integrals and applies the stationary phase method and A. Miyachi results for model oscillating multipliers. Moreover, we also obtain estimates from $L^p$ to $BMO$ and those from $BMO$ to $BMO$.
Keywords: estimates, oscillating symbol
Mots-clés : convolution, multiplier.
@article{IVM_2014_1_a0,
     author = {A. V. Gil and V. A. Nogin},
     title = {Estimates for some convolution operators with singularities in their kernels on a~sphere and their applications},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--16},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_1_a0/}
}
TY  - JOUR
AU  - A. V. Gil
AU  - V. A. Nogin
TI  - Estimates for some convolution operators with singularities in their kernels on a~sphere and their applications
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 3
EP  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_1_a0/
LA  - ru
ID  - IVM_2014_1_a0
ER  - 
%0 Journal Article
%A A. V. Gil
%A V. A. Nogin
%T Estimates for some convolution operators with singularities in their kernels on a~sphere and their applications
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 3-16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_1_a0/
%G ru
%F IVM_2014_1_a0
A. V. Gil; V. A. Nogin. Estimates for some convolution operators with singularities in their kernels on a~sphere and their applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2014), pp. 3-16. http://geodesic.mathdoc.fr/item/IVM_2014_1_a0/

[1] Nogin V. A., Karasev D. N., “On the $\mathcal L$-characteristic of some potential-type operators with radial kernels, having singularities on a sphere”, Fractional Calculus Appl. Anal., 4:3 (2001), 343–366 | MR | Zbl

[2] Karasev D. N., Nogin V. A., “On boundedness of some potential-type operators with oscillating kernels”, Math. Nachr., 278:5 (2005), 554–574 | MR | Zbl

[3] Karapetyants A. N., Nogin V. A., “Estimates for twisted convolution operators with singularities of kernels on a sphere and at the origin”, Diff. Equat., 42:5 (2006), 720–731 | DOI | MR | Zbl

[4] Gil A. V., Nogin V. A., “Otsenki dlya nekotorykh operatorov tipa potentsiala s ostsilliruyuschimi simvolami”, Vladikavkazsk. matem. zhurn., 12:3 (2010), 21–29 | MR | Zbl

[5] Gil A. V., Nogin V. A., “$L^1$-$H^1$ otsenki dlya obobschennogo potentsiala Strikhartsa”, Izv. vuzov. Matem., 2011, no. 9, 10–18 | MR | Zbl

[6] Stein E. M., Harmonic analysis: real-variable method, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[7] Miyachi A., “On some singular Fourier multipliers”, J. Fac. Sci. Univ. Tokyo Sec. IA, 28 (1981), 267–315 | MR | Zbl

[8] Calderon A. P., Torchinsky A., “Parabolic maximal functions associated with a distribution. II”, Adv. in Math., 24:2 (1977), 101–171 | MR | Zbl

[9] Samko S. G., Hypersingular integrals and their applications, Internat. Series “Analytical Methods and Special Functions”, 5, Taylor Frances, London, 2002 | MR | Zbl

[10] Miyachi A., “On some estimates for the wave equation in $L^p$ and $H^p$”, J. Fac. Sci. Univ. Tokyo Sect. IA, 27 (1980), 331–354 | MR | Zbl

[11] Fedoryuk M. V., Metod perevala, Hauka, M., 1977 | MR