Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2014_1_a0, author = {A. V. Gil and V. A. Nogin}, title = {Estimates for some convolution operators with singularities in their kernels on a~sphere and their applications}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--16}, publisher = {mathdoc}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2014_1_a0/} }
TY - JOUR AU - A. V. Gil AU - V. A. Nogin TI - Estimates for some convolution operators with singularities in their kernels on a~sphere and their applications JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2014 SP - 3 EP - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2014_1_a0/ LA - ru ID - IVM_2014_1_a0 ER -
%0 Journal Article %A A. V. Gil %A V. A. Nogin %T Estimates for some convolution operators with singularities in their kernels on a~sphere and their applications %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2014 %P 3-16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2014_1_a0/ %G ru %F IVM_2014_1_a0
A. V. Gil; V. A. Nogin. Estimates for some convolution operators with singularities in their kernels on a~sphere and their applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2014), pp. 3-16. http://geodesic.mathdoc.fr/item/IVM_2014_1_a0/
[1] Nogin V. A., Karasev D. N., “On the $\mathcal L$-characteristic of some potential-type operators with radial kernels, having singularities on a sphere”, Fractional Calculus Appl. Anal., 4:3 (2001), 343–366 | MR | Zbl
[2] Karasev D. N., Nogin V. A., “On boundedness of some potential-type operators with oscillating kernels”, Math. Nachr., 278:5 (2005), 554–574 | MR | Zbl
[3] Karapetyants A. N., Nogin V. A., “Estimates for twisted convolution operators with singularities of kernels on a sphere and at the origin”, Diff. Equat., 42:5 (2006), 720–731 | DOI | MR | Zbl
[4] Gil A. V., Nogin V. A., “Otsenki dlya nekotorykh operatorov tipa potentsiala s ostsilliruyuschimi simvolami”, Vladikavkazsk. matem. zhurn., 12:3 (2010), 21–29 | MR | Zbl
[5] Gil A. V., Nogin V. A., “$L^1$-$H^1$ otsenki dlya obobschennogo potentsiala Strikhartsa”, Izv. vuzov. Matem., 2011, no. 9, 10–18 | MR | Zbl
[6] Stein E. M., Harmonic analysis: real-variable method, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl
[7] Miyachi A., “On some singular Fourier multipliers”, J. Fac. Sci. Univ. Tokyo Sec. IA, 28 (1981), 267–315 | MR | Zbl
[8] Calderon A. P., Torchinsky A., “Parabolic maximal functions associated with a distribution. II”, Adv. in Math., 24:2 (1977), 101–171 | MR | Zbl
[9] Samko S. G., Hypersingular integrals and their applications, Internat. Series “Analytical Methods and Special Functions”, 5, Taylor Frances, London, 2002 | MR | Zbl
[10] Miyachi A., “On some estimates for the wave equation in $L^p$ and $H^p$”, J. Fac. Sci. Univ. Tokyo Sect. IA, 27 (1980), 331–354 | MR | Zbl
[11] Fedoryuk M. V., Metod perevala, Hauka, M., 1977 | MR