Finite rings with some restrictions on zero-divisor graphs
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2014), pp. 48-59

Voir la notice de l'article provenant de la source Math-Net.Ru

The zero-divisor graph $\Gamma(R)$ of an associative ring $R$ is the graph whose vertices are all nonzero zero-divisors (one-sided and two-sided) of $R$, and two distinct vertices $x$ and $y$ are joined by an edge if and only if either $xy=0$ or $yx=0$. In the present paper, we give full description of finite rings with regular zero-divisor graphs. We also prove some properties of finite rings such that their zero-divisor graphs satisfy the Dirac condition.
Keywords: zero-divisor graph, regular graph, associative ring, finite ring.
@article{IVM_2014_12_a4,
     author = {A. S. Kuzmina and Yu. N. Maltsev},
     title = {Finite rings with some restrictions on zero-divisor graphs},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {48--59},
     publisher = {mathdoc},
     number = {12},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_12_a4/}
}
TY  - JOUR
AU  - A. S. Kuzmina
AU  - Yu. N. Maltsev
TI  - Finite rings with some restrictions on zero-divisor graphs
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 48
EP  - 59
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_12_a4/
LA  - ru
ID  - IVM_2014_12_a4
ER  - 
%0 Journal Article
%A A. S. Kuzmina
%A Yu. N. Maltsev
%T Finite rings with some restrictions on zero-divisor graphs
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 48-59
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_12_a4/
%G ru
%F IVM_2014_12_a4
A. S. Kuzmina; Yu. N. Maltsev. Finite rings with some restrictions on zero-divisor graphs. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2014), pp. 48-59. http://geodesic.mathdoc.fr/item/IVM_2014_12_a4/