Finite rings with some restrictions on zero-divisor graphs
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2014), pp. 48-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

The zero-divisor graph $\Gamma(R)$ of an associative ring $R$ is the graph whose vertices are all nonzero zero-divisors (one-sided and two-sided) of $R$, and two distinct vertices $x$ and $y$ are joined by an edge if and only if either $xy=0$ or $yx=0$. In the present paper, we give full description of finite rings with regular zero-divisor graphs. We also prove some properties of finite rings such that their zero-divisor graphs satisfy the Dirac condition.
Keywords: zero-divisor graph, regular graph, associative ring, finite ring.
@article{IVM_2014_12_a4,
     author = {A. S. Kuzmina and Yu. N. Maltsev},
     title = {Finite rings with some restrictions on zero-divisor graphs},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {48--59},
     publisher = {mathdoc},
     number = {12},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_12_a4/}
}
TY  - JOUR
AU  - A. S. Kuzmina
AU  - Yu. N. Maltsev
TI  - Finite rings with some restrictions on zero-divisor graphs
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 48
EP  - 59
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_12_a4/
LA  - ru
ID  - IVM_2014_12_a4
ER  - 
%0 Journal Article
%A A. S. Kuzmina
%A Yu. N. Maltsev
%T Finite rings with some restrictions on zero-divisor graphs
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 48-59
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_12_a4/
%G ru
%F IVM_2014_12_a4
A. S. Kuzmina; Yu. N. Maltsev. Finite rings with some restrictions on zero-divisor graphs. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2014), pp. 48-59. http://geodesic.mathdoc.fr/item/IVM_2014_12_a4/

[1] Redmond S. P., “The zero-divisor graph of a noncommutative ring”, Int. J. Commut. rings, 1:4 (2002), 203–211

[2] Akbari S., Maimani H. R., Yassemi S., “When zero-divisor graph is planar or a complete $r$-partite graph”, Journal of Algebra, 270 (2003), 169–180 | DOI | MR | Zbl

[3] Belshoff R., Chapman J., “Planar zero-divisor graphs”, Journal of Algebra, 316 (2007), 471–480 | DOI | MR | Zbl

[4] Kuz'mina A. S., Maltsev Yu. N., “Nilpotent finite rings with planar zero-divisor graphs”, Asian-European Journal of Mathematics, 1:4 (2008), 565–574 | DOI | MR | Zbl

[5] Kuzmina A. S., “Opisanie konechnykh nenilpotentnykh kolets, imeyuschikh planarnye grafy delitelei nulya”, Diskretnaya matematika, 21:4 (2009), 60–75 | DOI | MR | Zbl

[6] Kuzmina A. S., “Finite rings with Eulerian zero-divisor graphs”, Journal of Algebra and its Applications, 11:3 (2012), 1250055, 9 pp. | DOI | MR

[7] Akbari S., Mohammadian A., “Zero-divisor graphs of non-commutative rings”, J. Algebra, 296 (2006), 462–479 | DOI | MR | Zbl

[8] Akbari S., Mohammadian A., “On the zero-divisor graph of a commutative ring”, J. Algebra, 274 (2004), 847–855 | DOI | MR | Zbl

[9] Kuzmina A. S., Maltsev Yu. N., “Opisanie mnogoobrazii kolets, v kotorykh vse konechnye koltsa imeyut gamiltonovy grafy delitelei nulya”, Algebra i logika, 52:2 (2013), 203–218 | MR | Zbl

[10] Distel R., Teoriya grafov, Izd-vo Instituta matematiki, Novosibirsk, 2002

[11] Elizarov V. P., Konechnye koltsa, Gelios ARV, Moskva, 2006

[12] Stanley R. P., “Zero-square rings”, Pacific J. Math., 30:3 (1969), 811–824 | DOI | MR | Zbl