Conformal mapping onto numerable polygon with double symmetry
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2014), pp. 37-47

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider simply connected domains of half-plane type with the symmetry of transfer along the real axis by $2\pi$ and symmetry with respect to vertical straight line $w=\pi+iv$, $v\in\mathbb R$, with a boundary consisting of straight line segments. Conformal mapping of the half-plane onto such domains are represented by integral of Schwarz–Christoffel integral type. The proof of the result is based on Riemann–Schwarz principle of symmetry and Schwarz–Christoffel classical formula. We found several mappings on specifically defined domain.
Keywords: numerable polygon, conformal mapping, symmetry of transfer, elliptic integrals.
@article{IVM_2014_12_a3,
     author = {I. A. Kolesnikov and L. S. Kopaneva},
     title = {Conformal mapping onto numerable polygon with double symmetry},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {37--47},
     publisher = {mathdoc},
     number = {12},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_12_a3/}
}
TY  - JOUR
AU  - I. A. Kolesnikov
AU  - L. S. Kopaneva
TI  - Conformal mapping onto numerable polygon with double symmetry
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 37
EP  - 47
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_12_a3/
LA  - ru
ID  - IVM_2014_12_a3
ER  - 
%0 Journal Article
%A I. A. Kolesnikov
%A L. S. Kopaneva
%T Conformal mapping onto numerable polygon with double symmetry
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 37-47
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_12_a3/
%G ru
%F IVM_2014_12_a3
I. A. Kolesnikov; L. S. Kopaneva. Conformal mapping onto numerable polygon with double symmetry. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2014), pp. 37-47. http://geodesic.mathdoc.fr/item/IVM_2014_12_a3/