Conformal mapping onto numerable polygon with double symmetry
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2014), pp. 37-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider simply connected domains of half-plane type with the symmetry of transfer along the real axis by $2\pi$ and symmetry with respect to vertical straight line $w=\pi+iv$, $v\in\mathbb R$, with a boundary consisting of straight line segments. Conformal mapping of the half-plane onto such domains are represented by integral of Schwarz–Christoffel integral type. The proof of the result is based on Riemann–Schwarz principle of symmetry and Schwarz–Christoffel classical formula. We found several mappings on specifically defined domain.
Keywords: numerable polygon, conformal mapping, symmetry of transfer, elliptic integrals.
@article{IVM_2014_12_a3,
     author = {I. A. Kolesnikov and L. S. Kopaneva},
     title = {Conformal mapping onto numerable polygon with double symmetry},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {37--47},
     publisher = {mathdoc},
     number = {12},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_12_a3/}
}
TY  - JOUR
AU  - I. A. Kolesnikov
AU  - L. S. Kopaneva
TI  - Conformal mapping onto numerable polygon with double symmetry
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 37
EP  - 47
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_12_a3/
LA  - ru
ID  - IVM_2014_12_a3
ER  - 
%0 Journal Article
%A I. A. Kolesnikov
%A L. S. Kopaneva
%T Conformal mapping onto numerable polygon with double symmetry
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 37-47
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_12_a3/
%G ru
%F IVM_2014_12_a3
I. A. Kolesnikov; L. S. Kopaneva. Conformal mapping onto numerable polygon with double symmetry. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2014), pp. 37-47. http://geodesic.mathdoc.fr/item/IVM_2014_12_a3/

[1] Gutlyanskii V. Ya., Ryazanov V. I., Geometricheskaya i topologicheskaya teoriya funktsii i otobrazhenii, v. 5, Nauk. dumka, Kiev, 2011

[2] Kufarev P. P., “Ob odnom metode chislennogo opredeleniya parametrov v integrale Shvartsa–Kristoffelya”, DAN SSSR, 57:6 (1947), 535–537 | MR | Zbl

[3] Salimov R. B., Shabalin P. L., “Otobrazhenie poluploskosti na mnogougolnik s beskonechnym chislom vershin”, Izv. vuzov. Matem., 2009, no. 10, 76–80 | MR | Zbl

[4] Salimov R. B., Shabalin P. L., “Odno obobschenie formuly Shvartsa–Kristoffelya”, Sib. zhurnal industrialnoi matematiki, 13:4 (2009), 109–117 | MR

[5] Driscoll T. A., Trefethen L. N., Schwarz–Christoffel mapping, Cambridge Monographs on Applied and Comput. Math., 8, Cambridge University Press, Cambridge, UK, 2002 | MR | Zbl

[6] Aleksandrov I. A., “Konformnye otobrazheniya poluploskosti na oblasti s simmetriei perenosa”, Izv. vuzov. Matem., 1999, no. 6, 15–18 | MR | Zbl

[7] Kopanev C. A., Kopaneva L. S., “Formula tipa formuly Kristoffelya–Shvartsa dlya schetnougolnika”, Vestn. Tomsk. un-ta, 280 (2003), 52–54

[8] Kolesnikov I. A., “Otobrazhenie na krugovoi schetnougolnik s simmetriei perenosa”, Vestn. Tomsk. un-ta. Matem. i mekh., 2013, no. 2, 33–43

[9] Hassenpflug W. S., “Elliptic integrals and the Schwarz–Christoffel transformation”, Computers Math. Applic., 33:12 (1997), 15–114 | DOI | MR | Zbl

[10] Aleksandrov I. A., Kopaneva L. S., “Levnerovskie semeistva otobrazhenii poluploskosti na oblasti s simmetriei perenosa”, Vestn. Tomsk. un-ta, 284 (2004), 5–7

[11] Floryan J. M., “Schwarz–Christoffel methods for conformal mapping of regions with a periodic boundary”, J. Comput. and Applied Math., 46 (1993), 77–102 | DOI | MR | Zbl

[12] Brady M., Pozrikidis C., “Diffusive transport across irregular and fractal walls”, Proc. R. Soc. Lond. A, 442:1916 (1993), 571–583 | DOI

[13] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1969 | MR | Zbl

[14] Zhuravskii A. M., Spravochnik po ellipticheskim funktsiyam, Izd-vo AN SSSR, M.–L., 1941

[15] Gursa E., Kurs matematicheskogo analiza, v. 1, GTTI, M.–L., 1933

[16] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, 4-e izd., Fizmatgiz, M., 1963 | MR

[17] Riera G., Carrasco H., Preiss R., “Schwarz–Christoffel conformal mapping for polygons with infinitely many sides”, Int. J. of Mathematics and Mathematical Sciences, 2008 (2008), Article ID 350326, 20 pp. | DOI | MR

[18] Tsarin Yu. A., “Conformal mapping technique in the theory of periodic structures”, Microwave and Optical Technology Letters, 26:1 (2000), 57–61 | 3.0.CO;2-Q class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[19] Volkovyskii L. I., Lunts G. L., Aramanovich I. G., Sbornik zadach po teorii funktsii kompleksnogo peremennogo, 4-e izd., Fizmatlit, M., 2004 | MR