Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2014_12_a3, author = {I. A. Kolesnikov and L. S. Kopaneva}, title = {Conformal mapping onto numerable polygon with double symmetry}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {37--47}, publisher = {mathdoc}, number = {12}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2014_12_a3/} }
TY - JOUR AU - I. A. Kolesnikov AU - L. S. Kopaneva TI - Conformal mapping onto numerable polygon with double symmetry JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2014 SP - 37 EP - 47 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2014_12_a3/ LA - ru ID - IVM_2014_12_a3 ER -
I. A. Kolesnikov; L. S. Kopaneva. Conformal mapping onto numerable polygon with double symmetry. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2014), pp. 37-47. http://geodesic.mathdoc.fr/item/IVM_2014_12_a3/
[1] Gutlyanskii V. Ya., Ryazanov V. I., Geometricheskaya i topologicheskaya teoriya funktsii i otobrazhenii, v. 5, Nauk. dumka, Kiev, 2011
[2] Kufarev P. P., “Ob odnom metode chislennogo opredeleniya parametrov v integrale Shvartsa–Kristoffelya”, DAN SSSR, 57:6 (1947), 535–537 | MR | Zbl
[3] Salimov R. B., Shabalin P. L., “Otobrazhenie poluploskosti na mnogougolnik s beskonechnym chislom vershin”, Izv. vuzov. Matem., 2009, no. 10, 76–80 | MR | Zbl
[4] Salimov R. B., Shabalin P. L., “Odno obobschenie formuly Shvartsa–Kristoffelya”, Sib. zhurnal industrialnoi matematiki, 13:4 (2009), 109–117 | MR
[5] Driscoll T. A., Trefethen L. N., Schwarz–Christoffel mapping, Cambridge Monographs on Applied and Comput. Math., 8, Cambridge University Press, Cambridge, UK, 2002 | MR | Zbl
[6] Aleksandrov I. A., “Konformnye otobrazheniya poluploskosti na oblasti s simmetriei perenosa”, Izv. vuzov. Matem., 1999, no. 6, 15–18 | MR | Zbl
[7] Kopanev C. A., Kopaneva L. S., “Formula tipa formuly Kristoffelya–Shvartsa dlya schetnougolnika”, Vestn. Tomsk. un-ta, 280 (2003), 52–54
[8] Kolesnikov I. A., “Otobrazhenie na krugovoi schetnougolnik s simmetriei perenosa”, Vestn. Tomsk. un-ta. Matem. i mekh., 2013, no. 2, 33–43
[9] Hassenpflug W. S., “Elliptic integrals and the Schwarz–Christoffel transformation”, Computers Math. Applic., 33:12 (1997), 15–114 | DOI | MR | Zbl
[10] Aleksandrov I. A., Kopaneva L. S., “Levnerovskie semeistva otobrazhenii poluploskosti na oblasti s simmetriei perenosa”, Vestn. Tomsk. un-ta, 284 (2004), 5–7
[11] Floryan J. M., “Schwarz–Christoffel methods for conformal mapping of regions with a periodic boundary”, J. Comput. and Applied Math., 46 (1993), 77–102 | DOI | MR | Zbl
[12] Brady M., Pozrikidis C., “Diffusive transport across irregular and fractal walls”, Proc. R. Soc. Lond. A, 442:1916 (1993), 571–583 | DOI
[13] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1969 | MR | Zbl
[14] Zhuravskii A. M., Spravochnik po ellipticheskim funktsiyam, Izd-vo AN SSSR, M.–L., 1941
[15] Gursa E., Kurs matematicheskogo analiza, v. 1, GTTI, M.–L., 1933
[16] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, 4-e izd., Fizmatgiz, M., 1963 | MR
[17] Riera G., Carrasco H., Preiss R., “Schwarz–Christoffel conformal mapping for polygons with infinitely many sides”, Int. J. of Mathematics and Mathematical Sciences, 2008 (2008), Article ID 350326, 20 pp. | DOI | MR
[18] Tsarin Yu. A., “Conformal mapping technique in the theory of periodic structures”, Microwave and Optical Technology Letters, 26:1 (2000), 57–61 | 3.0.CO;2-Q class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[19] Volkovyskii L. I., Lunts G. L., Aramanovich I. G., Sbornik zadach po teorii funktsii kompleksnogo peremennogo, 4-e izd., Fizmatlit, M., 2004 | MR