An analog of the Schwarz lemma for locally quasiconformal automorphisms of a~disk
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2014), pp. 87-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the classes of normalized locally quasiconformal authomorphisms of the unit disk with the given majorant of M. A. Lavrentev's characteristic we obtain sharp estimates of the module of function as analogs of Schwarz's lemma and A. Mori's theorem. The classical growth theorems for quasiconformal authomorphisms of the disk follow from proved inequalities. In the classes of normalized locally quasiconformal homeomorphisms of the unit disk with the given majorant of M. A. Lavrentev's characteristic we prove sharp estimates of the conformal radius and radius of covering disk. The main results are obtained by the means of the methods of extremal lengths and symmetrization.
Keywords: locally quasiconformal mapping, growth theorem, Schwarz's lemma.
@article{IVM_2014_11_a8,
     author = {S. Yu. Graf},
     title = {An analog of the {Schwarz} lemma for locally quasiconformal automorphisms of a~disk},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {87--92},
     publisher = {mathdoc},
     number = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_11_a8/}
}
TY  - JOUR
AU  - S. Yu. Graf
TI  - An analog of the Schwarz lemma for locally quasiconformal automorphisms of a~disk
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 87
EP  - 92
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_11_a8/
LA  - ru
ID  - IVM_2014_11_a8
ER  - 
%0 Journal Article
%A S. Yu. Graf
%T An analog of the Schwarz lemma for locally quasiconformal automorphisms of a~disk
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 87-92
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_11_a8/
%G ru
%F IVM_2014_11_a8
S. Yu. Graf. An analog of the Schwarz lemma for locally quasiconformal automorphisms of a~disk. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2014), pp. 87-92. http://geodesic.mathdoc.fr/item/IVM_2014_11_a8/

[1] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl

[2] Heinz E., “On one-to-one harmonic mappings”, Pacific J. Math., 9:1 (1959), 101–105 | DOI | MR | Zbl

[3] Mori A., “On an absolute constant in the theory of quasi-conformal mappings”, J. Math. Soc. Japan, 8:2 (1956), 156–166 | DOI | MR | Zbl

[4] Anderson G. D., Vamanamurthy M. K., Vuorinen M., Conformal invariants, inequalities an quasiconformal maps, Wiley Sons, N.Y., 1997 | MR | Zbl

[5] Vasil'ev A., Moduli of families of curves for conformal and quasiconformal mappings, Springer, Berlin–N.Y., 2002 | MR | Zbl

[6] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR

[7] Graf S. Yu., Eilangoli O. R., “Ob iskazhenii modulei dvusvyaznykh oblastei pri lokalno-kvazikonformnykh otobrazheniyakh”, Primenenie funktsionalnogo analiza v teorii priblizhenii, Sb., Tver, 2009, 34–43

[8] Belinskii P. P., Obschie svoistva kvazikonformnykh otobrazhenii, Nauka, Novosibirsk, 1974 | MR | Zbl

[9] Sheil-Small T., “Constants for planar harmonic mappings”, J. London Math. Soc., 42:2 (1990), 237–248 | DOI | MR | Zbl

[10] Graf S. Yu., “Teoremy rosta v klassakh normirovannykh lokalno-kvazikonformnykh otobrazhenii”, Probl. analiza, 2(20):2 (2013), 3–20 | MR | Zbl

[11] Clunie J., Sheil-Small T., “Harmonic univalent functions”, Ann. Acad. Sci. Fenn. Ser. A I Math., 9 (1984), 3–25 | DOI | MR | Zbl