Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2014_11_a8, author = {S. Yu. Graf}, title = {An analog of the {Schwarz} lemma for locally quasiconformal automorphisms of a~disk}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {87--92}, publisher = {mathdoc}, number = {11}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2014_11_a8/} }
S. Yu. Graf. An analog of the Schwarz lemma for locally quasiconformal automorphisms of a~disk. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2014), pp. 87-92. http://geodesic.mathdoc.fr/item/IVM_2014_11_a8/
[1] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl
[2] Heinz E., “On one-to-one harmonic mappings”, Pacific J. Math., 9:1 (1959), 101–105 | DOI | MR | Zbl
[3] Mori A., “On an absolute constant in the theory of quasi-conformal mappings”, J. Math. Soc. Japan, 8:2 (1956), 156–166 | DOI | MR | Zbl
[4] Anderson G. D., Vamanamurthy M. K., Vuorinen M., Conformal invariants, inequalities an quasiconformal maps, Wiley Sons, N.Y., 1997 | MR | Zbl
[5] Vasil'ev A., Moduli of families of curves for conformal and quasiconformal mappings, Springer, Berlin–N.Y., 2002 | MR | Zbl
[6] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR
[7] Graf S. Yu., Eilangoli O. R., “Ob iskazhenii modulei dvusvyaznykh oblastei pri lokalno-kvazikonformnykh otobrazheniyakh”, Primenenie funktsionalnogo analiza v teorii priblizhenii, Sb., Tver, 2009, 34–43
[8] Belinskii P. P., Obschie svoistva kvazikonformnykh otobrazhenii, Nauka, Novosibirsk, 1974 | MR | Zbl
[9] Sheil-Small T., “Constants for planar harmonic mappings”, J. London Math. Soc., 42:2 (1990), 237–248 | DOI | MR | Zbl
[10] Graf S. Yu., “Teoremy rosta v klassakh normirovannykh lokalno-kvazikonformnykh otobrazhenii”, Probl. analiza, 2(20):2 (2013), 3–20 | MR | Zbl
[11] Clunie J., Sheil-Small T., “Harmonic univalent functions”, Ann. Acad. Sci. Fenn. Ser. A I Math., 9 (1984), 3–25 | DOI | MR | Zbl