One projection method for linear equation of third order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2014), pp. 26-32
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study the Galyorkin method with a special basis for a linear operator-differential equation of the third order in a separable Hilbert space. The projection method is based on the eigenvectors of the operator similar to the leading operator of an equation. We obtain estimates for the convergence rate of approximate solutions in uniform topology.
Keywords:
operator-differential equation, Hilbert space, similar operator, Galyorkin method.
Mots-clés : orthogonal projection, convergence rate
Mots-clés : orthogonal projection, convergence rate
@article{IVM_2014_11_a2,
author = {P. V. Vinogradova and T. E. Koroleva},
title = {One projection method for linear equation of third order},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {26--32},
publisher = {mathdoc},
number = {11},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2014_11_a2/}
}
P. V. Vinogradova; T. E. Koroleva. One projection method for linear equation of third order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2014), pp. 26-32. http://geodesic.mathdoc.fr/item/IVM_2014_11_a2/