Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2014_11_a2, author = {P. V. Vinogradova and T. E. Koroleva}, title = {One projection method for linear equation of third order}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {26--32}, publisher = {mathdoc}, number = {11}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2014_11_a2/} }
P. V. Vinogradova; T. E. Koroleva. One projection method for linear equation of third order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2014), pp. 26-32. http://geodesic.mathdoc.fr/item/IVM_2014_11_a2/
[1] Dezin A. A., “Differentsialno-operatornye uravneniya”, Tr. MIAN, 229, 2000, 3–175 | MR | Zbl
[2] Vinogradova P., Zarubin A., “Projection method for Cauchy problem for an operator-differential equation”, Numerical Functional Analysis and Optimization, 30:1–2 (2009), 148–167 | DOI | MR | Zbl
[3] Vinogradova P., “Convergence rate of Galyorkin method for a certain class of nonlinear operator-differential equations”, Numerical Functional Analysis and Optimization, 31:3 (2010), 339–365 | DOI | MR | Zbl
[4] Vinogradova P. V., Zarubin A. G., “Otsenki pogreshnosti metoda Galërkina dlya nestatsionarnykh uravnenii”, Zhurn. vychisl. matem. i matem. fiz., 49:9 (2009), 1643–1651 | MR | Zbl
[5] Lyakhov D. A., Lomovtsev F. E., “Metod slabykh reshenii vspomogatelnoi zadachi Koshi dlya issledovaniya gladkosti reshenii giperbolicheskikh differentsialno-operatornykh uravnenii vtorogo poryadka s peremennymi oblastyami opredeleniya”, Vestn. BGU. Ser. 1, 2010, no. 2, 75–82 | MR | Zbl
[6] Khodos S. P., “Uravnenie Eilera–Puassona–Darbu s peremennymi oblastyami opredeleniya razryvnykh operatorov”, Vestn. BGU. Ser. 1, 2010, no. 1, 81—87 | MR | Zbl
[7] Aliev A. R., “Kraevye zadachi dlya odnogo klassa operatorno-differentsialnykh uravnenii vysokogo poryadka s peremennymi koeffitsientami”, Matem. zametki, 74:6 (2003), 803–814 | DOI | MR | Zbl
[8] Dubinskii Yu. A., “O nekotorykh differentsialno-operatornykh uravneniyakh proizvolnogo poryadka”, Matem. sb., 90(132):1 (1973), 3–22 | MR | Zbl
[9] Yurchuk N. I., “Granichnye zadachi dlya differentsialnykh uravnenii s zavisyaschimi ot parametra operatornymi koeffitsientami. I. Apriornye otsenki”, Differents. uravneniya, 12:9 (1976), 1645–1661 | MR | Zbl
[10] Yurchuk N. I., “Razreshimost granichnykh zadach dlya nekotorykh differentsialno-operatornykh uravnenii”, Differents. uravneniya, 13:4 (1977), 626–636 | MR | Zbl
[11] Vasilevskii K. V., “Granichnaya zadacha dlya dvuchlennogo differentsialno-operatornogo uravneniya tretego poryadka s peremennymi oblastyami opredeleniya neogranichennykh operatorov”, Vestn. BGU. Ser. 1, 2010, no. 3, 110—114 | MR | Zbl
[12] Aliev A. R., “O razreshimosti nachalno-kraevykh zadach dlya odnogo klassa operatorno-differentsialnykh uravnenii tretego poryadka”, Matem. zametki, 90:3 (2011), 323–339 | DOI | MR | Zbl
[13] Mamedov A. M., “O kraevoi zadache dlya odnogo klassa operatorno-differentsialnykh uravnenii tretego poryadka”, Matem. zametki, 87:4 (2010), 632–635 | DOI | MR | Zbl
[14] Krein S. G., Lineinye differentsialnye uravneniya v banakhovykh prostranstvakh, Nauka, M., 1967 | MR