One projection method for linear equation of third order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2014), pp. 26-32

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the Galyorkin method with a special basis for a linear operator-differential equation of the third order in a separable Hilbert space. The projection method is based on the eigenvectors of the operator similar to the leading operator of an equation. We obtain estimates for the convergence rate of approximate solutions in uniform topology.
Keywords: operator-differential equation, Hilbert space, similar operator, Galyorkin method.
Mots-clés : orthogonal projection, convergence rate
@article{IVM_2014_11_a2,
     author = {P. V. Vinogradova and T. E. Koroleva},
     title = {One projection method for linear equation of third order},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {26--32},
     publisher = {mathdoc},
     number = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_11_a2/}
}
TY  - JOUR
AU  - P. V. Vinogradova
AU  - T. E. Koroleva
TI  - One projection method for linear equation of third order
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 26
EP  - 32
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_11_a2/
LA  - ru
ID  - IVM_2014_11_a2
ER  - 
%0 Journal Article
%A P. V. Vinogradova
%A T. E. Koroleva
%T One projection method for linear equation of third order
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 26-32
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_11_a2/
%G ru
%F IVM_2014_11_a2
P. V. Vinogradova; T. E. Koroleva. One projection method for linear equation of third order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2014), pp. 26-32. http://geodesic.mathdoc.fr/item/IVM_2014_11_a2/