One projection method for linear equation of third order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2014), pp. 26-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the Galyorkin method with a special basis for a linear operator-differential equation of the third order in a separable Hilbert space. The projection method is based on the eigenvectors of the operator similar to the leading operator of an equation. We obtain estimates for the convergence rate of approximate solutions in uniform topology.
Keywords: operator-differential equation, Hilbert space, similar operator, Galyorkin method.
Mots-clés : orthogonal projection, convergence rate
@article{IVM_2014_11_a2,
     author = {P. V. Vinogradova and T. E. Koroleva},
     title = {One projection method for linear equation of third order},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {26--32},
     publisher = {mathdoc},
     number = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_11_a2/}
}
TY  - JOUR
AU  - P. V. Vinogradova
AU  - T. E. Koroleva
TI  - One projection method for linear equation of third order
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 26
EP  - 32
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_11_a2/
LA  - ru
ID  - IVM_2014_11_a2
ER  - 
%0 Journal Article
%A P. V. Vinogradova
%A T. E. Koroleva
%T One projection method for linear equation of third order
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 26-32
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_11_a2/
%G ru
%F IVM_2014_11_a2
P. V. Vinogradova; T. E. Koroleva. One projection method for linear equation of third order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2014), pp. 26-32. http://geodesic.mathdoc.fr/item/IVM_2014_11_a2/

[1] Dezin A. A., “Differentsialno-operatornye uravneniya”, Tr. MIAN, 229, 2000, 3–175 | MR | Zbl

[2] Vinogradova P., Zarubin A., “Projection method for Cauchy problem for an operator-differential equation”, Numerical Functional Analysis and Optimization, 30:1–2 (2009), 148–167 | DOI | MR | Zbl

[3] Vinogradova P., “Convergence rate of Galyorkin method for a certain class of nonlinear operator-differential equations”, Numerical Functional Analysis and Optimization, 31:3 (2010), 339–365 | DOI | MR | Zbl

[4] Vinogradova P. V., Zarubin A. G., “Otsenki pogreshnosti metoda Galërkina dlya nestatsionarnykh uravnenii”, Zhurn. vychisl. matem. i matem. fiz., 49:9 (2009), 1643–1651 | MR | Zbl

[5] Lyakhov D. A., Lomovtsev F. E., “Metod slabykh reshenii vspomogatelnoi zadachi Koshi dlya issledovaniya gladkosti reshenii giperbolicheskikh differentsialno-operatornykh uravnenii vtorogo poryadka s peremennymi oblastyami opredeleniya”, Vestn. BGU. Ser. 1, 2010, no. 2, 75–82 | MR | Zbl

[6] Khodos S. P., “Uravnenie Eilera–Puassona–Darbu s peremennymi oblastyami opredeleniya razryvnykh operatorov”, Vestn. BGU. Ser. 1, 2010, no. 1, 81—87 | MR | Zbl

[7] Aliev A. R., “Kraevye zadachi dlya odnogo klassa operatorno-differentsialnykh uravnenii vysokogo poryadka s peremennymi koeffitsientami”, Matem. zametki, 74:6 (2003), 803–814 | DOI | MR | Zbl

[8] Dubinskii Yu. A., “O nekotorykh differentsialno-operatornykh uravneniyakh proizvolnogo poryadka”, Matem. sb., 90(132):1 (1973), 3–22 | MR | Zbl

[9] Yurchuk N. I., “Granichnye zadachi dlya differentsialnykh uravnenii s zavisyaschimi ot parametra operatornymi koeffitsientami. I. Apriornye otsenki”, Differents. uravneniya, 12:9 (1976), 1645–1661 | MR | Zbl

[10] Yurchuk N. I., “Razreshimost granichnykh zadach dlya nekotorykh differentsialno-operatornykh uravnenii”, Differents. uravneniya, 13:4 (1977), 626–636 | MR | Zbl

[11] Vasilevskii K. V., “Granichnaya zadacha dlya dvuchlennogo differentsialno-operatornogo uravneniya tretego poryadka s peremennymi oblastyami opredeleniya neogranichennykh operatorov”, Vestn. BGU. Ser. 1, 2010, no. 3, 110—114 | MR | Zbl

[12] Aliev A. R., “O razreshimosti nachalno-kraevykh zadach dlya odnogo klassa operatorno-differentsialnykh uravnenii tretego poryadka”, Matem. zametki, 90:3 (2011), 323–339 | DOI | MR | Zbl

[13] Mamedov A. M., “O kraevoi zadache dlya odnogo klassa operatorno-differentsialnykh uravnenii tretego poryadka”, Matem. zametki, 87:4 (2010), 632–635 | DOI | MR | Zbl

[14] Krein S. G., Lineinye differentsialnye uravneniya v banakhovykh prostranstvakh, Nauka, M., 1967 | MR