Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2014_10_a6, author = {S. E. Stepanov and I. I. Tsyganok}, title = {Theorems of existence and non-existence of conformal {Killing} forms}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {54--61}, publisher = {mathdoc}, number = {10}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2014_10_a6/} }
TY - JOUR AU - S. E. Stepanov AU - I. I. Tsyganok TI - Theorems of existence and non-existence of conformal Killing forms JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2014 SP - 54 EP - 61 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2014_10_a6/ LA - ru ID - IVM_2014_10_a6 ER -
S. E. Stepanov; I. I. Tsyganok. Theorems of existence and non-existence of conformal Killing forms. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2014), pp. 54-61. http://geodesic.mathdoc.fr/item/IVM_2014_10_a6/
[1] Tachibana Sh., “On conformal Killing tensor in a Riemannian space”, Tôhoku Math. J., 21 (1969), 56–64 | DOI | MR | Zbl
[2] Kashiwada T., “On conformal Killing tensor”, Nat. Sci. Rep. Ochanomizu Univ., 19:2 (1968), 67–74 | MR | Zbl
[3] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. 1, Nauka, M., 1981
[4] Yano K., Bokhner S., Krivizna i chisla Betti, In. lit., M., 1957
[5] Stepanov S. E., “Krivizna i chisla Tachibany”, Matem. sb., 202:7 (2011), 135–146 | DOI | MR | Zbl
[6] Novikov S. P., “Topologiya”, Itogi nauki tekhn. Sovremen. probl. matem. Fundamentalnye napravleniya, 12, VINITI AN SSSR, 1986, 5–252 | MR | Zbl
[7] Stepanov S. E., “O nekotorykh konformnykh i proektivnykh skalyarnykh invariantakh rimanova mnogoobraziya”, Matem. zametki, 80:6 (2006), 902–907 | DOI | MR | Zbl
[8] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. 2, Nauka, M., 1981
[9] Petrsen P., Riemannian geometry, Springer Science, New York, 2006 | MR
[10] Besse A., Mnogoobraziya Einshteina, Nauka, M., 1990
[11] Nishikawa S., “On deformation of Riemannian metrics and manifolds with positive curvature operator”, Lecture Notes in Math., 1201, 1986, 202–211 | DOI | MR | Zbl
[12] Tachibana Sh., Ogiue K., “Les variétés riemanniennes dont l'opérateur de coubure restreint est positif sont des sphéres d'homologie réelle”, C. R. Acad. Sci. Paris, 289 (1979), 29–30 | MR | Zbl
[13] Semmelmann U., “Conformal Killing forms on Riemannian manifolds”, Math. Z., 245:3 (2003), 503–527 | DOI | MR | Zbl
[14] Kashiwada T., “On the curvature operator of the second kind”, Natural Science Report, Ochanomizu University, 44:2 (1993), 69–73 | MR | Zbl
[15] Kora M., “On conformal Killing forms and the proper space $\Delta$ for $p$-forms”, Math. J. Okayama Univ., 22:2 (1980), 195–204 | MR | Zbl
[16] Yano K., Integral formulas in Riemannian geometry, Marcel Dekker, New York, 1970 | MR | Zbl
[17] Stepanov S. E., “On conformal Killing $2$-form of the electromagnetic field”, J. Geom. and Phys., 33 (2000), 191–209 | DOI | MR | Zbl
[18] Tachibana Sh., Kashiwada T., “On the integrability of Killing–Yano's equation”, J. Math. Soc. Japan, 21:2 (1969), 259–265 | DOI | MR | Zbl