Theorems of existence and non-existence of conformal Killing forms
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2014), pp. 54-61

Voir la notice de l'article provenant de la source Math-Net.Ru

On an $n$-dimensional compact, orientable, connected Riemannian manifold, we consider the curvature operator acting on the space of covariant traceless symmetric $2$-tensors. We prove that, if the curvature operator is negative, the manifold admits no nonzero conformal Killing $p$-forms for $p=1,2,\dots,n-1$. On the other hand, we prove that the dimension of the vector space of conformal Killing $p$-forms on an $n$-dimensional compact simply-connected conformally flat Riemannian manifold $(M, g)$ is not zero.
Keywords: Riemannian manifold, curvature operator, conformal Killing forms, vanishing theorem, existence theorem.
@article{IVM_2014_10_a6,
     author = {S. E. Stepanov and I. I. Tsyganok},
     title = {Theorems of existence and non-existence of conformal {Killing} forms},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {54--61},
     publisher = {mathdoc},
     number = {10},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_10_a6/}
}
TY  - JOUR
AU  - S. E. Stepanov
AU  - I. I. Tsyganok
TI  - Theorems of existence and non-existence of conformal Killing forms
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 54
EP  - 61
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_10_a6/
LA  - ru
ID  - IVM_2014_10_a6
ER  - 
%0 Journal Article
%A S. E. Stepanov
%A I. I. Tsyganok
%T Theorems of existence and non-existence of conformal Killing forms
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 54-61
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_10_a6/
%G ru
%F IVM_2014_10_a6
S. E. Stepanov; I. I. Tsyganok. Theorems of existence and non-existence of conformal Killing forms. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2014), pp. 54-61. http://geodesic.mathdoc.fr/item/IVM_2014_10_a6/