Weak solvability of a~system of thermoviscoelasticity for Jeffris model
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 64-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish weak solvability to the initial-boundary value problem for the dynamic model of thermoviscoelasticity. The problem under consideration is the Jeffris model extended by the consequence from energy equation. The investigation of the corresponding initial-boundary value problem is carried out by decoupling of the problem and reduction to an operator equation in a suitable Banach space.
Keywords: Jeffris model of viscoelasticity, temperature expansion, apriori estimates, fixed point.
@article{IVM_2013_9_a7,
     author = {V. G. Zvyagin and V. P. Orlov},
     title = {Weak solvability of a~system of thermoviscoelasticity for {Jeffris} model},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {64--69},
     publisher = {mathdoc},
     number = {9},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_9_a7/}
}
TY  - JOUR
AU  - V. G. Zvyagin
AU  - V. P. Orlov
TI  - Weak solvability of a~system of thermoviscoelasticity for Jeffris model
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 64
EP  - 69
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_9_a7/
LA  - ru
ID  - IVM_2013_9_a7
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%A V. P. Orlov
%T Weak solvability of a~system of thermoviscoelasticity for Jeffris model
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 64-69
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_9_a7/
%G ru
%F IVM_2013_9_a7
V. G. Zvyagin; V. P. Orlov. Weak solvability of a~system of thermoviscoelasticity for Jeffris model. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 64-69. http://geodesic.mathdoc.fr/item/IVM_2013_9_a7/

[1] Reiner M., Reologiya, Fizmatgiz, M., 1965

[2] Vorotnikov D. A., Zvyagin V. G., “On the existence of weak solutions for the initial-boundary value problem in the Jeffris model of motion of a viscoelastic medium”, Abstr. Appl. Anal., 10 (2004), 815–829 | DOI | MR | Zbl

[3] Feireisl E., Malek J., “On the Navier–Stokes equations with temperature-dependent transport coefficients”, Differ. Equ. Nonlinear Mech., 2006 (2006), Article ID 90616, 14 pp. | DOI | MR | Zbl

[4] Pawlow I., Zajaczkowski W., “Unique solvability of a nonlinear thermoviscoelasticity system arising in shape memory materials”, Discrete and Cont. Dynam. Systems Series S, 4:2, Special issue on Thermodynamics and Phase Change (2011), 441–466 | MR | Zbl

[5] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki, Nauka, Novosibirsk, 1983 | Zbl

[6] Bonetti E., Bonfanti G., “Existence and uniqueness of the solution to a $3$D thermoviscoelastic system”, Electro. J. Differential Equations, 50 (2003), 1–15 | MR

[7] Consiglieri L., “Friction boundary conditions on thermal incompressible viscous flows”, Ann. Mat. Pura Appl., 187:4 (2008), 647–665 | DOI | MR | Zbl

[8] Roubiček T., “Thermo-visco-elastisity at small strains with $L_1$ data”, Quart. Appl. Math., 67:1 (2009), 47–41 | MR

[9] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980 | MR

[10] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. Mosk. matem. o-va, 10, 1961, 297–350 | MR | Zbl

[11] Krasnoselskii M. A. i dr., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR

[12] Sobolevskii P. E., “Neravenstva koertsitivnosti dlya abstraktnykh parabolicheskikh uravnenii”, DAN SSSR, 157 (1964), 52–55 | MR