Families of domains with best possible Hardy constant
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 59-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We geometrically describe families of non-convex plane and space domains in which the basic Hardy inequality is valid with the constant $1/4$. In our constructions we used some new constants depending on the dimension and determined as roots of Lamb type equations and a constant defined by E. B. Davies.
Keywords: Hardy inequalities, distance function, modules of rings.
Mots-clés : nonconvex domains
@article{IVM_2013_9_a6,
     author = {F. G. Avkhadiev},
     title = {Families of domains with best possible {Hardy} constant},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {59--63},
     publisher = {mathdoc},
     number = {9},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_9_a6/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
TI  - Families of domains with best possible Hardy constant
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 59
EP  - 63
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_9_a6/
LA  - ru
ID  - IVM_2013_9_a6
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%T Families of domains with best possible Hardy constant
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 59-63
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_9_a6/
%G ru
%F IVM_2013_9_a6
F. G. Avkhadiev. Families of domains with best possible Hardy constant. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 59-63. http://geodesic.mathdoc.fr/item/IVM_2013_9_a6/

[1] Davies E. B., “The Hardy constant”, Quart. J. Math. Oxford (2), 46:4 (1995), 417–431 | DOI | MR | Zbl

[2] Matskewich T., Sobolevskii P. E., “The best possible constant in a generalized Hardy's inequality for convex domains in $\mathbb R^n$”, Nonlinear Anal., 28:9 (1997), 1601–1610 | DOI | MR | Zbl

[3] Brezis H., Marcus M., “Hardy's inequalities revisited”, Dedicated to Ennio De Giorgi, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:1–2 (1997–1998), 217–237 | MR | Zbl

[4] Marcus M., Mitzel V. J., Pinchover Y., “On the best constant for Hardy's inequality in $\mathbb R^n$”, Trans. Amer. Math. Soc., 350:8 (1998), 3237–3250 | DOI | MR

[5] Barbatis G., Filippas S., Tertikas A., “A unified approach to improved $L^p$ Hardy inequalities with best constants”, Trans. Amer. Math. Soc., 356:6 (2004), 2169–2196 | DOI | MR | Zbl

[6] Armitage D. H., Kuran U., “The convexity and the superharmonicity of the signed distance function”, Proc. Amer. Math. Soc., 93:4 (1985), 598–600 | DOI | MR | Zbl

[7] Avkhadiev F. G., Laptev A., “Hardy inequalities for nonconvex domains”, Around research of Vladimir Maz'ya, v. I, Int. Math. Ser., 11, Springer, N.Y., 2010, 1–12 | DOI | MR | Zbl

[8] Avkhadiev F. G., “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31 | MR | Zbl

[9] Avkhadiev F. G., “Neravenstva tipa Khardi v ploskikh i prostranstvennykh otkrytykh mnozhestvakh”, Tr. matem. inst. im. V. A. Steklova, 255, 2006, 8–18 | MR

[10] Fillipas S., Maz'ya V., Tertikas A., “On a question of Brezis and Marcus”, Calc. Var. Partial Diff. Equat., 25:1 (2005), 491–501

[11] Avkhadiev F. G., Wirths K.-J., “Unified Poincaré and Hardy inequalities with sharp constants for convex domains”, Z. Angew. Math. Mech. (ZAMM), 87:8–9 (2007), 632–642 | MR | Zbl

[12] Avkhadiev F. G., Wirths K.-J., “Weighted Hardy inequalities with sharp constants”, Lobachevskii J. Math., 31:1 (2010), 1–7 | DOI | MR | Zbl

[13] Avkhadiev F. G., Wirths K.-J., “Sharp Hardy-type inequalities with Lamb's constants”, Bull. Belg. Math. Soc. Simon Stevin, 18:4 (2011), 723–736 | MR | Zbl

[14] Avkhadiev F. G., Nasibullin R. G., Shafigullin I. K., “Neravenstva tipa Khardi so stepennymi i logarifmicheskimi vesami v oblastyakh evklidova prostranstva”, Izv. vuzov. Matem., 2011, no. 9, 90–94 | MR | Zbl

[15] Lamb H., “Note on the induction of electric currents in a cylinder placed across the lines of magnetic force”, Proc. London Math. Soc., 15 (1884), 270–274 | MR

[16] Littlewood J. E., Lecture on the theory of functions, Oxford University Press, Oxford, 1944 | MR | Zbl

[17] Avkhadiev F. G., Wirths K.-J., Schwarz–Pick type inequalities, Birkhäuser Verlag, Basel, 2009 | MR | Zbl