Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2013_9_a3, author = {M. A. Komarov}, title = {An example of nonuniqueness of a~simple partial fraction of the best uniform approximation}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {28--37}, publisher = {mathdoc}, number = {9}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2013_9_a3/} }
TY - JOUR AU - M. A. Komarov TI - An example of nonuniqueness of a~simple partial fraction of the best uniform approximation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2013 SP - 28 EP - 37 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2013_9_a3/ LA - ru ID - IVM_2013_9_a3 ER -
M. A. Komarov. An example of nonuniqueness of a~simple partial fraction of the best uniform approximation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 28-37. http://geodesic.mathdoc.fr/item/IVM_2013_9_a3/
[1] Danchenko V. I., Danchenko D. Ya., “O ravnomernom priblizhenii logarifmicheskimi proizvodnymi mnogochlenov”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Cb. mater. shk.-konferentsii, posvyaschennoi 130-letiyu so dnya rozhdeniya D. F. Egorova, Kazan, 1999, 74–77
[2] Danchenko V. I., Danchenko D. Ya., “O priblizhenii naiprosteishimi drobyami”, Matem. zametki, 70:4 (2001), 553–559 | DOI | MR | Zbl
[3] Kosukhin O. N., O nekotorykh netraditsionnykh metodakh priblizheniya, svyazannykh s kompleksnymi polinomami, Diss. $\dots$ kand. fiz.-matem. nauk, MGU, 2005
[4] Novak Ya. V., Aproksimatsiini ta interpolyatsiini vlastivosti naiprostishikh drobiv, Diss. $\dots$ kand. fiz.-matem. nauk, IM NAN Ukrainy, Kiev, 2009
[5] Komarov M. A., “K zadache o edinstvennosti naiprosteishei drobi nailuchshego priblizheniya”, Probl. matem. analiza, 56, 2011, 63–82 | MR
[6] Borodin P. A., Kosukhin O. N., “O priblizhenii naiprosteishimi drobyami na deistvitelnoi osi”, Vestn. MGU. Ser. 1: Matematika, mekhanika, 2005, no. 1, 3–8 | MR | Zbl
[7] Protasov V. Yu., “Priblizheniya naiprosteishimi drobyami i preobrazovanie Gilberta”, Izv. RAN. Ser. matem., 73:2 (2009), 123–140 | DOI | MR | Zbl
[8] Danchenko V. I., “O skhodimosti naiprosteishikh drobei v $L_p(\mathbb R)$”, Matem. sb., 201:7 (2010), 53–66 | DOI | MR | Zbl
[9] Kayumov I. R., “Skhodimost ryadov naiprosteishikh drobei v $L_p(\mathbb R)$”, Matem. sb., 202:10 (2011), 87–98 | DOI | MR | Zbl
[10] Danchenko V. I., Kondakova E. N., “Chebyshevskii alternans pri approksimatsii konstant naiprosteishimi drobyami”, Tr. MIAN, 270, 2010, 86–96 | MR | Zbl
[11] Komarov M. A., “Primery, svyazannye s nailuchshim priblizheniem naiprosteishimi drobyami”, Probl. matem. analiza, 65, 2012, 119–131 | MR | Zbl
[12] Komarov M. A., “Primer needinstvennosti naiprosteishei drobi nailuchshego priblizheniya”, Tezisy dokl. mezhdunar. konf. po differents. uravneniyam i dinamicheskim sistemam (Suzdal, 29 iyunya – 4 iyulya 2012), Izd-vo MIAN, M., 2012, 88–89