An example of nonuniqueness of a~simple partial fraction of the best uniform approximation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 28-37

Voir la notice de l'article provenant de la source Math-Net.Ru

For arbitrary natural $n\ge2$ we construct an example of a real continuous function, for which there exist more than one simple partial fraction of order $\le n$ of the best uniform approximation on a segment of the real axis. We prove that even the Chebyshev alternance consisting of $n+1$ points does not guarantee the uniqueness of the best approximation fraction. The obtained results are generalizations of known nonuniqueness examples constructed for $n=2,3$ in the case of simple partial fractions of an arbitrary order $n$.
Keywords: simple partial fraction, approximation, uniqueness
Mots-clés : alternance.
@article{IVM_2013_9_a3,
     author = {M. A. Komarov},
     title = {An example of nonuniqueness of a~simple partial fraction of the best uniform approximation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {28--37},
     publisher = {mathdoc},
     number = {9},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_9_a3/}
}
TY  - JOUR
AU  - M. A. Komarov
TI  - An example of nonuniqueness of a~simple partial fraction of the best uniform approximation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 28
EP  - 37
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_9_a3/
LA  - ru
ID  - IVM_2013_9_a3
ER  - 
%0 Journal Article
%A M. A. Komarov
%T An example of nonuniqueness of a~simple partial fraction of the best uniform approximation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 28-37
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_9_a3/
%G ru
%F IVM_2013_9_a3
M. A. Komarov. An example of nonuniqueness of a~simple partial fraction of the best uniform approximation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 28-37. http://geodesic.mathdoc.fr/item/IVM_2013_9_a3/