An example of nonuniqueness of a~simple partial fraction of the best uniform approximation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 28-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

For arbitrary natural $n\ge2$ we construct an example of a real continuous function, for which there exist more than one simple partial fraction of order $\le n$ of the best uniform approximation on a segment of the real axis. We prove that even the Chebyshev alternance consisting of $n+1$ points does not guarantee the uniqueness of the best approximation fraction. The obtained results are generalizations of known nonuniqueness examples constructed for $n=2,3$ in the case of simple partial fractions of an arbitrary order $n$.
Keywords: simple partial fraction, approximation, uniqueness
Mots-clés : alternance.
@article{IVM_2013_9_a3,
     author = {M. A. Komarov},
     title = {An example of nonuniqueness of a~simple partial fraction of the best uniform approximation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {28--37},
     publisher = {mathdoc},
     number = {9},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_9_a3/}
}
TY  - JOUR
AU  - M. A. Komarov
TI  - An example of nonuniqueness of a~simple partial fraction of the best uniform approximation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 28
EP  - 37
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_9_a3/
LA  - ru
ID  - IVM_2013_9_a3
ER  - 
%0 Journal Article
%A M. A. Komarov
%T An example of nonuniqueness of a~simple partial fraction of the best uniform approximation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 28-37
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_9_a3/
%G ru
%F IVM_2013_9_a3
M. A. Komarov. An example of nonuniqueness of a~simple partial fraction of the best uniform approximation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 28-37. http://geodesic.mathdoc.fr/item/IVM_2013_9_a3/

[1] Danchenko V. I., Danchenko D. Ya., “O ravnomernom priblizhenii logarifmicheskimi proizvodnymi mnogochlenov”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Cb. mater. shk.-konferentsii, posvyaschennoi 130-letiyu so dnya rozhdeniya D. F. Egorova, Kazan, 1999, 74–77

[2] Danchenko V. I., Danchenko D. Ya., “O priblizhenii naiprosteishimi drobyami”, Matem. zametki, 70:4 (2001), 553–559 | DOI | MR | Zbl

[3] Kosukhin O. N., O nekotorykh netraditsionnykh metodakh priblizheniya, svyazannykh s kompleksnymi polinomami, Diss. $\dots$ kand. fiz.-matem. nauk, MGU, 2005

[4] Novak Ya. V., Aproksimatsiini ta interpolyatsiini vlastivosti naiprostishikh drobiv, Diss. $\dots$ kand. fiz.-matem. nauk, IM NAN Ukrainy, Kiev, 2009

[5] Komarov M. A., “K zadache o edinstvennosti naiprosteishei drobi nailuchshego priblizheniya”, Probl. matem. analiza, 56, 2011, 63–82 | MR

[6] Borodin P. A., Kosukhin O. N., “O priblizhenii naiprosteishimi drobyami na deistvitelnoi osi”, Vestn. MGU. Ser. 1: Matematika, mekhanika, 2005, no. 1, 3–8 | MR | Zbl

[7] Protasov V. Yu., “Priblizheniya naiprosteishimi drobyami i preobrazovanie Gilberta”, Izv. RAN. Ser. matem., 73:2 (2009), 123–140 | DOI | MR | Zbl

[8] Danchenko V. I., “O skhodimosti naiprosteishikh drobei v $L_p(\mathbb R)$”, Matem. sb., 201:7 (2010), 53–66 | DOI | MR | Zbl

[9] Kayumov I. R., “Skhodimost ryadov naiprosteishikh drobei v $L_p(\mathbb R)$”, Matem. sb., 202:10 (2011), 87–98 | DOI | MR | Zbl

[10] Danchenko V. I., Kondakova E. N., “Chebyshevskii alternans pri approksimatsii konstant naiprosteishimi drobyami”, Tr. MIAN, 270, 2010, 86–96 | MR | Zbl

[11] Komarov M. A., “Primery, svyazannye s nailuchshim priblizheniem naiprosteishimi drobyami”, Probl. matem. analiza, 65, 2012, 119–131 | MR | Zbl

[12] Komarov M. A., “Primer needinstvennosti naiprosteishei drobi nailuchshego priblizheniya”, Tezisy dokl. mezhdunar. konf. po differents. uravneniyam i dinamicheskim sistemam (Suzdal, 29 iyunya – 4 iyulya 2012), Izd-vo MIAN, M., 2012, 88–89