Isoperimetric properties of Euclidean boundary moments of a~simply connected domain
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2013), pp. 66-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider integral functionals of a simply connected domain which depend on the distance to the domain boundary. We prove an isoperimetric inequality generalizing theorems derived by the Schwarz symmetrization method. For $L^p$-norms of the distance function we prove an analog of the Payne inequality for the torsional rigidity of the domain. In compare with the Payne inequality we find new extremal domains different from a disk.
Keywords: distance function to the boundary of a domain, Bonnesen inequality, isoperimetric inequalities, Euclidean moments of a domain with respect to the boundary, torsional rigidity, isoperimetric monotonicity.
@article{IVM_2013_8_a6,
     author = {R. G. Salakhudinov},
     title = {Isoperimetric properties of {Euclidean} boundary moments of a~simply connected domain},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {66--79},
     publisher = {mathdoc},
     number = {8},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_8_a6/}
}
TY  - JOUR
AU  - R. G. Salakhudinov
TI  - Isoperimetric properties of Euclidean boundary moments of a~simply connected domain
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 66
EP  - 79
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_8_a6/
LA  - ru
ID  - IVM_2013_8_a6
ER  - 
%0 Journal Article
%A R. G. Salakhudinov
%T Isoperimetric properties of Euclidean boundary moments of a~simply connected domain
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 66-79
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_8_a6/
%G ru
%F IVM_2013_8_a6
R. G. Salakhudinov. Isoperimetric properties of Euclidean boundary moments of a~simply connected domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2013), pp. 66-79. http://geodesic.mathdoc.fr/item/IVM_2013_8_a6/

[1] Leavitt J., Ungar P., “Circle supports the largest sandpile”, Comment. Pure Appl. Math., 15 (1962), 35–37 | DOI | MR | Zbl

[2] Avkhadiev F. G., “Reshenie obobschennoi zadachi Sen-Venana”, Matem. sbornik, 189:12 (1998), 3–12 | DOI | MR | Zbl

[3] Polia G., Segë G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962

[4] Salahudinov R. G., “An isoperimetric inequality for torsional rigidity in the complex plane”, J. Inequal. and Appl., 6 (2001), 253–260 | MR | Zbl

[5] Bañuelos R., van den Berg M., Carroll T., “Torsional rigidity and expected lifetime of brownian motion”, J. London Math. Soc. (2), 66 (2002), 499–512 | DOI | MR | Zbl

[6] Salakhudinov R. G., “Dvustoronnie otsenki $l^p$-normy funktsii napryazheniya vypuklykh oblastei v $\mathbb R^n$”, Izv. vuzov. Matem., 2006, no. 3, 41–49 | MR | Zbl

[7] Avkhadiev F. G., “Geometricheskie kharakteristiki oblasti, ekvivalentnye nekotorym normam operatorov vlozheniya”, Materialy mezhdunarodn. konf. i Chebyshevskie chteniya, v. 1, 1996, 12–14

[8] Bandle C., Isoperimetric inequalities and applications, Pitman Advanced Publishing Program, Boston–London–Melbourne, 1980 | MR | Zbl

[9] Avkhadiev F. G., Salahudinov R. G., “Isoperimetric inequalities for conformal moments of plane domains”, J. of Inequalities and Appl., 7:4 (2002), 593–601 | MR | Zbl

[10] Salahudinov R. G., “Isoperimetric inequalities for $l^p$-norms of the distance function to the boundary”, Uchen. zap. Kazansk. un-ta. Ser. Fiz.-matem. nauki, 148, no. 2, 2006, 151–162 | Zbl

[11] Payne L. E., “Some inequalities in the torsion problem for multiply connected regions”, Studies in Mathematical analysis and Related Topics, Essays in honor of G. Polya, Stanford University Press, Stanford, California, 1962, 270–280 | MR

[12] Burago Yu. D., Zalgaller V. A., Geometricheskie neravenstva, Nauka, Leningrad, 1980 | MR | Zbl

[13] Hersch J., “Isoperimetric monotonicity – some properties and conjectures (connection between isoperimetric inequalities)”, SIAM Rev., 30:4 (1988), 551–577 | DOI | MR | Zbl

[14] Kohler-Jobin M.-Th., “Une propriété de monotonie isopérimétrique qui contient plusieurs théorèmes classiques”, C. R. Acad. Sci. Paris, 284:3 (1977), 917–920 | MR | Zbl

[15] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, L., 1966 | MR | Zbl

[16] Salakhudinov R. G., “Refined inequalities for euclidian moments of a domain with respect to its boundary”, SIAM J. Math. Anal., 44:4 (2012), 2949–2961 | DOI | MR | Zbl