Description of ring varieties whose finite rings are uniquely determined by their zero-divisor graphs
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2013), pp. 13-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

The zero-divisor graph $\Gamma(R)$ of an associative ring $R$ is a graph whose vertices are all nonzero zero-divisors (one-sided and two-sided) of $R$, and two distinct vertices $x$ and $y$ are joined by an edge if and only if either $xy=0$ or $yx=0$. In the present paper, we give a full description of ring varieties whose finite rings are uniquely determined by their zero-divisor graphs.
Keywords: zero-divisor graph, finite ring, variety of associative rings.
@article{IVM_2013_6_a1,
     author = {E. V. Zhuravlev and A. S. Kuz'mina and Yu. N. Mal'tsev},
     title = {Description of ring varieties whose finite rings are uniquely determined by their zero-divisor graphs},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {13--24},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_6_a1/}
}
TY  - JOUR
AU  - E. V. Zhuravlev
AU  - A. S. Kuz'mina
AU  - Yu. N. Mal'tsev
TI  - Description of ring varieties whose finite rings are uniquely determined by their zero-divisor graphs
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 13
EP  - 24
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_6_a1/
LA  - ru
ID  - IVM_2013_6_a1
ER  - 
%0 Journal Article
%A E. V. Zhuravlev
%A A. S. Kuz'mina
%A Yu. N. Mal'tsev
%T Description of ring varieties whose finite rings are uniquely determined by their zero-divisor graphs
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 13-24
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_6_a1/
%G ru
%F IVM_2013_6_a1
E. V. Zhuravlev; A. S. Kuz'mina; Yu. N. Mal'tsev. Description of ring varieties whose finite rings are uniquely determined by their zero-divisor graphs. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2013), pp. 13-24. http://geodesic.mathdoc.fr/item/IVM_2013_6_a1/

[1] Beck I., “Coloring of commutative rings”, J. Algebra, 116 (1988), 208–226 | DOI | MR | Zbl

[2] Anderson D. F., Livingston P. S., “The zero-divisor graph of a commutative ring”, J. Algebra, 217 (1999), 434–447 | DOI | MR | Zbl

[3] Akbari S., Mohammadian A., “On zero-divisor graphs of finite rings”, J. Algebra, 314 (2007), 168–184 | DOI | MR | Zbl

[4] Akbari S., Mohammadian A., “On the zero-divisor graph of a commutative ring”, J. Algebra, 274 (2004), 847–855 | DOI | MR | Zbl

[5] Kuzmina A. S., “O nekotorykh svoistvakh mnogoobrazii kolets, v kotorykh konechnye koltsa odnoznachno opredelyayutsya svoimi grafami delitelei nulya”, Sib. elektronnye matem. izv., 8 (2011), 179–190 | MR

[6] Kuzmina A. S., Maltsev Y. N., “On varieties of rings whose finite rings are determined by their zero-divisor graphs”, Asian-European J. Math., 5:2 (2012), 101–111 | MR

[7] Tarski A., “Equationally complete rings and relation algebras”, Indag. Math., 18 (1956), 39–46 | MR

[8] Dzhekobson N., Stroenie kolets, In. lit., M., 1961 | MR