Uniformly continuous dependence of a~solution to a~controlled functional operator equation on a~shift of control
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2013), pp. 36-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish sufficient conditions for the uniformly (with respect to the set of admissible controls) continuous dependence of a solution to a controlled functional operator equation on a shift of control along a vector of independent variables. The shift of control may mean, in particular, some time delay (or outstripping) of the control. We illustrate the use of general results by an example of a mixed boundary value problem associated with a wave equation.
Keywords: nonlinear functional operator equation, continuous dependence of solution, shift of control, delay of control.
Mots-clés : Lebesgue spaces
@article{IVM_2013_5_a3,
     author = {A. V. Chernov},
     title = {Uniformly continuous dependence of a~solution to a~controlled functional operator equation on a~shift of control},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {36--50},
     publisher = {mathdoc},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_5_a3/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - Uniformly continuous dependence of a~solution to a~controlled functional operator equation on a~shift of control
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 36
EP  - 50
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_5_a3/
LA  - ru
ID  - IVM_2013_5_a3
ER  - 
%0 Journal Article
%A A. V. Chernov
%T Uniformly continuous dependence of a~solution to a~controlled functional operator equation on a~shift of control
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 36-50
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_5_a3/
%G ru
%F IVM_2013_5_a3
A. V. Chernov. Uniformly continuous dependence of a~solution to a~controlled functional operator equation on a~shift of control. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2013), pp. 36-50. http://geodesic.mathdoc.fr/item/IVM_2013_5_a3/

[1] Fedorov V. M., Kurs funktsionalnogo analiza, Lan, SPb., 2005

[2] Kharatishvili G. L., “Printsip maksimuma v teorii optimalnykh protsessov s zapazdyvaniem”, DAN SSSR, 136:1 (1961), 39–42

[3] Gasanov K. K., “Printsip maksimuma dlya protsessov s raspredelennymi parametrami i zapazdyvayuschimi argumentami”, Differents. uravneniya, 9:4 (1973), 743–746 | MR | Zbl

[4] Sirazetdinov T. K., Optimizatsiya sistem s raspredelennymi parametrami, Nauka, M., 1977 | MR

[5] Knowles G., “The optimal control of parabolic systems with boundary conditions involving time delay”, J. Optim. Theory Appl., 25:4 (1978), 563–574 | DOI | MR | Zbl

[6] Kowalewski A., “Minimum time problem for distributed hyperbolic systems with time lags”, IMA J. Math. Control Inf., 20:3 (2003), 263–275 | DOI | MR | Zbl

[7] Masiero F., “Stochastic optimal control problems and parabolic equations in Banach spaces”, SIAM J. Contr. Optim., 47:1 (2008), 251–300 | DOI | MR | Zbl

[8] Tonkov E. L., “Dinamicheskaya sistema sdvigov i voprosy ravnomernoi upravlyaemosti lineinoi sistemy”, DAN SSSR, 256:2 (1981), 290–294 | MR | Zbl

[9] Tonkov E. L., “Dinamicheskaya sistema sdvigov i voprosy globalnoi upravlyaemosti lineinoi pochti periodicheskoi sistemy”, UMN, 36:4(220) (1981), 226

[10] Chernov A. V., “O volterrovykh funktsionalno-operatornykh igrakh s nefiksirovannoi tsepochkoi”, Vestn. Nizhegorodsk. un-ta im. N. I. Lobachevskogo, 2012, no. 2(1), 142–148

[11] Chernov A. V., “O suschestvovanii $\varepsilon$-ravnovesiya v volterrovykh funktsionalno-operatornykh igrakh bez diskriminatsii”, Matem. teoriya igr i ee prilozheniya, 4:1 (2012), 74–92

[12] Chernov A. V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matem., 2011, no. 3, 95–107 | MR | Zbl

[13] Chernov A. V., “O mazhorantno-minorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matem., 2012, no. 3, 62–73 | Zbl

[14] Chernov A. V., “O volterrovom obobschenii metoda monotonizatsii dlya nelineinykh funktsionalno-operatornykh uravnenii”, Vestn. Udmurtsk. un-ta. Matem. Mekhan. Kompyuternye nauki, 2012, no. 2, 84–99

[15] Chernov A. V., “O skhodimosti metoda prostoi iteratsii dlya resheniya nelineinykh funktsionalno-operatornykh uravnenii”, Vestn. Nizhegorodsk. un-ta, 2011, no. 4(1), 149–155

[16] Chernov A. V., “O dostatochnykh usloviyakh upravlyaemosti nelineinykh raspredelennykh sistem”, Zhurn. vychisl. matem. i matem. fiz., 52:8 (2012), 1400–1414

[17] Sumin V. I., Chernov A. V., “Operatory v prostranstvakh izmerimykh funktsii: volterrovost i kvazinilpotentnost”, Differents. uravneniya, 34:10 (1998), 1402–1411 | MR | Zbl

[18] Sumin V. I., Chernov A. V., “O nekotorykh priznakakh kvazinilpotentnosti funktsionalnykh operatorov”, Izv. vuzov. Matem., 2000, no. 2, 77–80 | MR | Zbl

[19] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988 | MR | Zbl

[20] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[21] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[22] Vulikh B. Z., Kratkii kurs teorii funktsii veschestvennoi peremennoi, Nauka, M., 1965 | Zbl

[23] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[24] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR