Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2013_4_a4, author = {A. V. Loboda and V. K. Evchenko}, title = {Various representations of matrix {Lie} algebras related to homogeneous surfaces}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {42--60}, publisher = {mathdoc}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2013_4_a4/} }
TY - JOUR AU - A. V. Loboda AU - V. K. Evchenko TI - Various representations of matrix Lie algebras related to homogeneous surfaces JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2013 SP - 42 EP - 60 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2013_4_a4/ LA - ru ID - IVM_2013_4_a4 ER -
A. V. Loboda; V. K. Evchenko. Various representations of matrix Lie algebras related to homogeneous surfaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2013), pp. 42-60. http://geodesic.mathdoc.fr/item/IVM_2013_4_a4/
[1] Cartan E., “Sur la geometrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Math. Pura Appl. (4), 11 (1932), 17–90 | DOI | MR | Zbl
[2] Fels G., Kaup W., “Classification of Levi degenerate homogeneous $CR$-manifolds in dimension 5”, Acta Math., 210 (2008), 1–82 | DOI | MR
[3] Loboda A. V., “Ob opredelenii odnorodnoi strogo psevdo-vypukloi giperpoverkhnosti po koeffitsientam ee normalnogo uravneniya”, Matem. zametki, 73:3 (2003), 419–423 | DOI | MR | Zbl
[4] Loboda A. V., Khodarev A. S., “Ob odnom semeistve affinno-odnorodnykh veschestvennykh giperpoverkhnostei 3-mernogo kompleksnogo prostranstva”, Izv. vuzov. Matem., 2003, no. 10, 38–50 | MR | Zbl
[5] Demin A. M., Loboda A. V., “Primer 2-parametricheskogo semeistva affinno-odnorodnykh veschestvennykh giperpoverkhnostei v $\mathbb C^3$”, Matem. zametki, 84:5 (2008), 791–794 | DOI | MR | Zbl
[6] Danilov M. S., Loboda A. V., “Ob affinnoi odnorodnosti indefinitnykh veschestvennykh giperpoverkhnostei prostranstva $\mathbb C^3$”, Matem. zametki, 88:6 (2010), 866–884 | DOI | MR
[7] Evchenko V. K., Loboda A. V., “4-mernye matrichnye algebry i affinnaya odnorodnost veschestvennykh giperpoverkhnostei prostranstva $\mathbb C^3$”, Vestnik VGU. Fizika. Matematika, 2009, no. 1, 108–118
[8] Loboda A. V., “Affinno-odnorodnye veschestvennye giperpoverkhnosti 3-mernogo kompleksnogo prostranstva”, Vestnik VGU. Fizika. Matematika, 2009, no. 2, 71–91
[9] Shirokov A. P., Shirokov P. A., Affinnaya differentsialnaya geometriya, Fizmatgiz, M., 1959 | MR
[10] Azad H., Huckleberry A., Richthofer W., “Homogeneous $CR$ manifolds”, J. Reine und Angew. Math., 358 (1985), 125–154 | MR | Zbl
[11] Doubrov B. M., Komrakov B. P., Rabinovich M., “Homogeneous surfaces in the 3-dimensional affine geometry”, Geometry and Topology of Submanifolds – VIII, World Scientific, 1996, 168–178 | MR | Zbl
[12] Beloshapka V. K., Kossovskiy I. G., “Homogeneous hypersurfaces in $\mathbb C^3$, associated with a model $CR$-cubic”, J. Geom. Anal., 20:3 (2010), 538–564 | DOI | MR | Zbl
[13] Danilov M. S., “Primery affinno-odnorodnykh indefinitnykh veschestvennykh giperpoverkhnostei prostranstva $\mathbb C^3$”, Vestnik VGU. Fizika. Matematika, 2010, no. 1, 97–106
[14] Evchenko V. K., Loboda A. V., One family of algebraic homogeneous surfaces, Preprint, http://www.mathematik.uni-bielefeld.de/sfb701/files/preprints/sfb11129.pdf
[15] Nguen Tkhi Tkhyui Zyong, “O golomorfnykh svoistvakh odnogo semeistva affinno-odnorodnykh poverkhnostei”, Voronezhskaya vesennyaya matem. shkola, VVMSh-2012 (Voronezh, 2012), tezisy dokl., Izd-vo Voronezhsk. gos. un-ta, Voronezh, 2012, 122–123
[16] Loboda A. V., “Klassifikatsiya affinno-odnorodnykh nevyrozhdennykh po Levi veschestvennykh giperpoverkhnostei prostranstva $\mathbb C^2$”, Sovremen. probl. matem. i mekhan., VI, Matematika, vyp. 3. K 100-letiyu so dnya rozhdeniya N. V. Efimova, Izd-vo MGU, Moskva, 2011, 56–68
[17] Loboda A. V., “Affinno-odnorodnye veschestvennye giperpoverkhnosti v $\mathbb C^2$”, Funkts. analiz i ego prilozh. (to appear)
[18] Nguen Tkhi Tkhyui Zyong, “Affinnye invarianty 3-go poryadka odnorodnykh veschestvennykh giperpoverkhnostei v $\mathbb C^3$”, Voronezhskaya zimnyaya matem. shkola, VZMSh-2012 (Voronezh, 2012), Tezisy dokl., Izd-vo Voronezhsk. gos. un-ta, Voronezh, 2012, 156–158
[19] Golebuzov D. A., Loboda A. V., “Ob affinno-odnorodnykh veschestvennykh giperpoverkhnostyakh obschego polozheniya v $\mathbb C^3$”, Voronezhskaya zimnyaya matem. shkola, VZMSh-2012 (Voronezh, 2012), Tezisy dokl., Izd-vo Voronezhsk. gos. un-ta, Voronezh, 2012, 50–51
[20] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR
[21] Tanaka N., “On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables”, J. Math. Soc. Japan, 14 (1962), 397–429 | DOI | MR | Zbl
[22] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta Math., 133:3 (1974), 219–271 | DOI | MR
[23] Stanton N. K., “Infinitesimal $CR$ automorphisms of rigid hypersurfaces”, Amer. J. Math., 117:1 (1995), 141–167 | DOI | MR | Zbl
[24] Bishop R., Krittenden R., Geometriya mnogoobrazii, Mir, M., 1963