Various representations of matrix Lie algebras related to homogeneous surfaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2013), pp. 42-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a $3$-parameter family of real homogeneous hypersurfaces in a $3$-dimensional complex space. This family generalizes several examples that were published earlier. It contains both Levi nondegenerate surfaces (strictly pseudoconvex and indefinite ones) and surfaces with degenerate Levi form. Unlike the known cumbersome descriptions of matrix algebras corresponding to the surfaces under consideration, we propose an upper triangular representation of these algebras with simple special bases. We show that all affinely homogeneous surfaces of the constructed family are algebraic ones of degree $1,2,3,4$, or $6$.
Keywords: homogeneous manifold, complex space, real hypersurface, vector field.
Mots-clés : matrix Lie algebra
@article{IVM_2013_4_a4,
     author = {A. V. Loboda and V. K. Evchenko},
     title = {Various representations of matrix {Lie} algebras related to homogeneous surfaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {42--60},
     publisher = {mathdoc},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_4_a4/}
}
TY  - JOUR
AU  - A. V. Loboda
AU  - V. K. Evchenko
TI  - Various representations of matrix Lie algebras related to homogeneous surfaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 42
EP  - 60
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_4_a4/
LA  - ru
ID  - IVM_2013_4_a4
ER  - 
%0 Journal Article
%A A. V. Loboda
%A V. K. Evchenko
%T Various representations of matrix Lie algebras related to homogeneous surfaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 42-60
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_4_a4/
%G ru
%F IVM_2013_4_a4
A. V. Loboda; V. K. Evchenko. Various representations of matrix Lie algebras related to homogeneous surfaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2013), pp. 42-60. http://geodesic.mathdoc.fr/item/IVM_2013_4_a4/

[1] Cartan E., “Sur la geometrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Math. Pura Appl. (4), 11 (1932), 17–90 | DOI | MR | Zbl

[2] Fels G., Kaup W., “Classification of Levi degenerate homogeneous $CR$-manifolds in dimension 5”, Acta Math., 210 (2008), 1–82 | DOI | MR

[3] Loboda A. V., “Ob opredelenii odnorodnoi strogo psevdo-vypukloi giperpoverkhnosti po koeffitsientam ee normalnogo uravneniya”, Matem. zametki, 73:3 (2003), 419–423 | DOI | MR | Zbl

[4] Loboda A. V., Khodarev A. S., “Ob odnom semeistve affinno-odnorodnykh veschestvennykh giperpoverkhnostei 3-mernogo kompleksnogo prostranstva”, Izv. vuzov. Matem., 2003, no. 10, 38–50 | MR | Zbl

[5] Demin A. M., Loboda A. V., “Primer 2-parametricheskogo semeistva affinno-odnorodnykh veschestvennykh giperpoverkhnostei v $\mathbb C^3$”, Matem. zametki, 84:5 (2008), 791–794 | DOI | MR | Zbl

[6] Danilov M. S., Loboda A. V., “Ob affinnoi odnorodnosti indefinitnykh veschestvennykh giperpoverkhnostei prostranstva $\mathbb C^3$”, Matem. zametki, 88:6 (2010), 866–884 | DOI | MR

[7] Evchenko V. K., Loboda A. V., “4-mernye matrichnye algebry i affinnaya odnorodnost veschestvennykh giperpoverkhnostei prostranstva $\mathbb C^3$”, Vestnik VGU. Fizika. Matematika, 2009, no. 1, 108–118

[8] Loboda A. V., “Affinno-odnorodnye veschestvennye giperpoverkhnosti 3-mernogo kompleksnogo prostranstva”, Vestnik VGU. Fizika. Matematika, 2009, no. 2, 71–91

[9] Shirokov A. P., Shirokov P. A., Affinnaya differentsialnaya geometriya, Fizmatgiz, M., 1959 | MR

[10] Azad H., Huckleberry A., Richthofer W., “Homogeneous $CR$ manifolds”, J. Reine und Angew. Math., 358 (1985), 125–154 | MR | Zbl

[11] Doubrov B. M., Komrakov B. P., Rabinovich M., “Homogeneous surfaces in the 3-dimensional affine geometry”, Geometry and Topology of Submanifolds – VIII, World Scientific, 1996, 168–178 | MR | Zbl

[12] Beloshapka V. K., Kossovskiy I. G., “Homogeneous hypersurfaces in $\mathbb C^3$, associated with a model $CR$-cubic”, J. Geom. Anal., 20:3 (2010), 538–564 | DOI | MR | Zbl

[13] Danilov M. S., “Primery affinno-odnorodnykh indefinitnykh veschestvennykh giperpoverkhnostei prostranstva $\mathbb C^3$”, Vestnik VGU. Fizika. Matematika, 2010, no. 1, 97–106

[14] Evchenko V. K., Loboda A. V., One family of algebraic homogeneous surfaces, Preprint, http://www.mathematik.uni-bielefeld.de/sfb701/files/preprints/sfb11129.pdf

[15] Nguen Tkhi Tkhyui Zyong, “O golomorfnykh svoistvakh odnogo semeistva affinno-odnorodnykh poverkhnostei”, Voronezhskaya vesennyaya matem. shkola, VVMSh-2012 (Voronezh, 2012), tezisy dokl., Izd-vo Voronezhsk. gos. un-ta, Voronezh, 2012, 122–123

[16] Loboda A. V., “Klassifikatsiya affinno-odnorodnykh nevyrozhdennykh po Levi veschestvennykh giperpoverkhnostei prostranstva $\mathbb C^2$”, Sovremen. probl. matem. i mekhan., VI, Matematika, vyp. 3. K 100-letiyu so dnya rozhdeniya N. V. Efimova, Izd-vo MGU, Moskva, 2011, 56–68

[17] Loboda A. V., “Affinno-odnorodnye veschestvennye giperpoverkhnosti v $\mathbb C^2$”, Funkts. analiz i ego prilozh. (to appear)

[18] Nguen Tkhi Tkhyui Zyong, “Affinnye invarianty 3-go poryadka odnorodnykh veschestvennykh giperpoverkhnostei v $\mathbb C^3$”, Voronezhskaya zimnyaya matem. shkola, VZMSh-2012 (Voronezh, 2012), Tezisy dokl., Izd-vo Voronezhsk. gos. un-ta, Voronezh, 2012, 156–158

[19] Golebuzov D. A., Loboda A. V., “Ob affinno-odnorodnykh veschestvennykh giperpoverkhnostyakh obschego polozheniya v $\mathbb C^3$”, Voronezhskaya zimnyaya matem. shkola, VZMSh-2012 (Voronezh, 2012), Tezisy dokl., Izd-vo Voronezhsk. gos. un-ta, Voronezh, 2012, 50–51

[20] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[21] Tanaka N., “On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables”, J. Math. Soc. Japan, 14 (1962), 397–429 | DOI | MR | Zbl

[22] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta Math., 133:3 (1974), 219–271 | DOI | MR

[23] Stanton N. K., “Infinitesimal $CR$ automorphisms of rigid hypersurfaces”, Amer. J. Math., 117:1 (1995), 141–167 | DOI | MR | Zbl

[24] Bishop R., Krittenden R., Geometriya mnogoobrazii, Mir, M., 1963