Classification of complex simply connected homogeneous spaces of dimensions not greater than~2
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2013), pp. 16-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a classification of finite-dimensional complex Lie algebras of analytic vector fields on a complex plane and that of corresponding actions of Lie groups on complex two-dimensional manifolds. The mentioned algebras have been specified by S. Lie. More precisely, he has specified only vector fields, i.e., bases of the corresponding Lie algebras, rather than the structure of the algebras. No isomorphic algebras among the mentioned ones were specified. Therefore the Lie classification is far from complete; in this paper we complete it in one important case. We consider only a part of classification related to transitive actions of Lie groups.
Keywords: Lie algebra, homogeneous space.
Mots-clés : Lie group of transformations
@article{IVM_2013_3_a1,
     author = {V. V. Gorbatsevich},
     title = {Classification of complex simply connected homogeneous spaces of dimensions not greater than~2},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {16--32},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_3_a1/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Classification of complex simply connected homogeneous spaces of dimensions not greater than~2
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 16
EP  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_3_a1/
LA  - ru
ID  - IVM_2013_3_a1
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Classification of complex simply connected homogeneous spaces of dimensions not greater than~2
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 16-32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_3_a1/
%G ru
%F IVM_2013_3_a1
V. V. Gorbatsevich. Classification of complex simply connected homogeneous spaces of dimensions not greater than~2. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2013), pp. 16-32. http://geodesic.mathdoc.fr/item/IVM_2013_3_a1/

[1] Lie S., Engel F., Theorie der Transformationsgruppen, v. I, II, III, Teubner, Leipzig, 1888–1893 | Zbl

[2] Mostow G. D., “The extensibility of local Lie groups of transformations and groups on surfaces”, Ann. Math., 52:3 (1950), 606–637 | DOI | MR

[3] Gorbatsevich V. V., Onischik A. L., “Gruppy Li preobrazovanii”, Itogi nauki i tekhn. Sovr. probl. matem. Fund. napravl., 20, VINITI, M., 1988, 103–240 | MR | Zbl

[4] Kowalewski G., Einfuhrung in die Theorie der kontinuierlichen Gruppen, Academische Verlag, Leipzig, 1931

[5] Chebotarev N. G., Teoriya grupp Li, GITTL, M.–L., 1940

[6] Vladimirov S. A., Gruppy simmetrii differentsialnykh uravnenii i relyativistskie polya, Atomizdat, M., 1979 | Zbl

[7] Hermann R., Sophus Lie's 1880 transformation group paper, Math. Sci. Press, Brooklyn, 1975 | MR

[8] Doubrov B., Komrakov B., Two-dimensional homogeneous spaces, ISLC Press, Minsk, 2000