Unconditionally stable schemes for convection-diffusion problems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2013), pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

Convection-diffusion problems are basic ones in continuum mechanics. The main features of these problems are connected with the fact that their operators may have an indefinite sign. In this paper we study stability of difference schemes with weights for convection-diffusion problems where the convective transport operator may have various forms. We present unconditionally stable schemes for non-stationary convection-diffusion equations based on the use of new variables. Similar schemes are also used for parabolic equations where the operator represents the sum of diffusion operators.
Mots-clés : convection-diffusion equations
Keywords: finite difference schemes, stability of difference schemes.
@article{IVM_2013_3_a0,
     author = {N. M. Afanas'eva and P. N. Vabishchevich and M. V. Vasil'eva},
     title = {Unconditionally stable schemes for convection-diffusion problems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--15},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_3_a0/}
}
TY  - JOUR
AU  - N. M. Afanas'eva
AU  - P. N. Vabishchevich
AU  - M. V. Vasil'eva
TI  - Unconditionally stable schemes for convection-diffusion problems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 3
EP  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_3_a0/
LA  - ru
ID  - IVM_2013_3_a0
ER  - 
%0 Journal Article
%A N. M. Afanas'eva
%A P. N. Vabishchevich
%A M. V. Vasil'eva
%T Unconditionally stable schemes for convection-diffusion problems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 3-15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_3_a0/
%G ru
%F IVM_2013_3_a0
N. M. Afanas'eva; P. N. Vabishchevich; M. V. Vasil'eva. Unconditionally stable schemes for convection-diffusion problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2013), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2013_3_a0/

[1] Morton K. W., Kellogg R. B., Numerical solution of convection-diffusion problems, Chapman Hall, London, 1996 | MR | Zbl

[2] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii-diffuzii, Nauka, M., 1999

[3] Hundsdorfer W. H., Verwer J. G., Numerical solution of time-dependent advection-diffusion-reaction equations, Springer, Berlin, 2003 | MR | Zbl

[4] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[5] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl

[6] Samarskii A. A., Matus P. P., Vabishchevich P. N., Difference schemes with operator factors, Kluwer, Dordrecht, 2002 | Zbl

[7] Samarskii A. A., Vabishchevich P. N., Computational heat transfer, Wiley, Chichester, 1995

[8] Cherdakov P. V., Teoriya regulyarnogo rezhima, Energiya, M., 1975

[9] Mickens R. E., “Nonstandard finite difference schemes for differential equations”, J. Differen. Equat. Appl., 8:9 (2002), 823–847 | DOI | MR | Zbl

[10] Mickens R. E. (Ed.), Advances in the applications of nonstandard finite difference schemes, World Scientific, New Jersey, 2005 | MR

[11] Peaceman D. W., Fundamentals of numerical reservoir simulation, Elsevier Scientific Pub. Co., 1977

[12] Aziz K., Settari A., Petroleum reservoir simulation, Appl. Scien. Publ., 1979