The Haagerup problem on subadditive weights on $W^*$-algebras.~II
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2013), pp. 72-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

In year 1975 U. Haagerup has posed the following question: whether every normal subadditive weight on a $W^*$-algebra is $\sigma$-weakly lower semicontinuous? In year 2011 the author has positively answered this question in a particular case of abelian $W^*$-algebras and has presented a general form of normal subadditive weights on these algebras. Here we positively answer this question in the case of finite-dimensional $W^*$-algebras. As a corollary, we give a positive answer for subadditive weights with some natural additional condition on atomic $W^*$-algebras. We also obtain the general form of such normal subadditive weights and norms for wide class of normed solid spaces on atomic $W^*$-algebras.
Keywords: $W^*$-algebra, subadditive weight, normal functional, projection, atom, normed solid space, bounded linear operator, Hilbert space.
@article{IVM_2013_12_a6,
     author = {A. M. Bikchentaev},
     title = {The {Haagerup} problem on subadditive weights on $W^*${-algebras.~II}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {72--76},
     publisher = {mathdoc},
     number = {12},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_12_a6/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - The Haagerup problem on subadditive weights on $W^*$-algebras.~II
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 72
EP  - 76
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_12_a6/
LA  - ru
ID  - IVM_2013_12_a6
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T The Haagerup problem on subadditive weights on $W^*$-algebras.~II
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 72-76
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_12_a6/
%G ru
%F IVM_2013_12_a6
A. M. Bikchentaev. The Haagerup problem on subadditive weights on $W^*$-algebras.~II. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2013), pp. 72-76. http://geodesic.mathdoc.fr/item/IVM_2013_12_a6/

[1] Haagerup U., “Normal weights on $W^*$-algebras”, J. Funct. Anal., 19:3 (1975), 302–317 | DOI | MR | Zbl

[2] Bikchentaev A. M., “O zadache Khaagerupa o subadditivnykh vesakh na $W^*$-algebrakh”, Izv. vuzov. Matem., 2011, no. 10, 94–98 | MR | Zbl

[3] Takesaki M., Theory of operator algebras, Springer-Verlag, New York–Heidelberg–Berlin, 1979 | MR | Zbl

[4] Bratteli O., Robinson D. W., Operator algebras and quantum statistical mechanics, v. 1, Texts and Monographs in Physics, $C^*$- and $W^*$-algebras, symmetry groups, decomposition of states, Springer-Verlag, New York–Heidelberg–Berlin, 1979 | MR | Zbl

[5] Dixmier J., “Existence de traces non normales”, C. R. Acad. Sci. Paris Sér. A, 262 (1966), 1107–1108 | MR | Zbl

[6] Keri A. L., Sukochev F. A., “Sledy Diksme i nekotorye prilozheniya v nekommutativnoi geometrii”, UMN, 61:6 (2006), 45–110 | DOI | MR | Zbl

[7] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[8] Bikchentaev A. M., “Operator blochnogo proektirovaniya v normirovannykh idealnykh prostranstvakh izmerimykh operatorov”, Izv. vuzov. Matem., 2012, no. 2, 86–91 | MR | Zbl

[9] Bikchentaev A. M., “O minimalnosti topologii skhodimosti po mere na konechnykh algebrakh fon Neimana”, Matem. zametki, 75:3 (2004), 342–349 | DOI | MR | Zbl

[10] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, 4-e izd., ispr., Nevskii Dialekt, SPb., 2004 | MR

[11] Bikchentaev A. M., “Ob odnom svoistve $L_p$-prostranstv na polukonechnykh algebrakh fon Neimana”, Matem. zametki, 64:2 (1998), 185–190 | DOI | MR | Zbl