A difference scheme for the numerical solution of an advection equation with aftereffect
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2013), pp. 77-82
Voir la notice de l'article provenant de la source Math-Net.Ru
We propose a family of grid methods for the numerical solution of an advection equation with a time delay in a general form. The methods are based on the idea of separating the current state and the prehistory function. We prove the convergence of the second-order method coordinatewise and do that of the first-order with respect to time. The proof is based on techniques applied for proving analogous theorems for functional differential equations and on the general theory of difference schemes. We illustrate the obtained results with a test example.
Mots-clés :
advection equations
Keywords: time delay, difference scheme, numerical methods.
Keywords: time delay, difference scheme, numerical methods.
@article{IVM_2013_10_a8,
author = {S. I. Solodushkin},
title = {A difference scheme for the numerical solution of an advection equation with aftereffect},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {77--82},
publisher = {mathdoc},
number = {10},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2013_10_a8/}
}
TY - JOUR AU - S. I. Solodushkin TI - A difference scheme for the numerical solution of an advection equation with aftereffect JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2013 SP - 77 EP - 82 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2013_10_a8/ LA - ru ID - IVM_2013_10_a8 ER -
S. I. Solodushkin. A difference scheme for the numerical solution of an advection equation with aftereffect. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2013), pp. 77-82. http://geodesic.mathdoc.fr/item/IVM_2013_10_a8/