Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2013_10_a8, author = {S. I. Solodushkin}, title = {A difference scheme for the numerical solution of an advection equation with aftereffect}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {77--82}, publisher = {mathdoc}, number = {10}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2013_10_a8/} }
TY - JOUR AU - S. I. Solodushkin TI - A difference scheme for the numerical solution of an advection equation with aftereffect JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2013 SP - 77 EP - 82 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2013_10_a8/ LA - ru ID - IVM_2013_10_a8 ER -
S. I. Solodushkin. A difference scheme for the numerical solution of an advection equation with aftereffect. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2013), pp. 77-82. http://geodesic.mathdoc.fr/item/IVM_2013_10_a8/
[1] Wu J., Theory and applications of partial functional differential equations, Springer-Verlag, New York, 1996 | MR
[2] Zubik-Kowal B., Delay partial differential equations, http://www.scholarpedia.org/article/Delay_partial_differential_equations
[3] Petrov I. B., Lobanov A. I., Lektsii po vychislitelnoi matematike, Internet-universitet informatsionnykh tekhnologii, M., 2006
[4] Volkanin L. S., “Chislennoe reshenie uravneniya perenosa s effektom nasledstvennosti”, Tr. konf. “Teoriya upravleniya i matematicheskoe modelirovanie” (Izhevsk, 15–18 maya 2012), Izd. IzhGTU, Izhevsk, 2012, 12–14
[5] Karpenko D. A., Solodushkin S. I., “Chislennoe reshenie uravneniya perenosa s effektom posledeistviya”, Tez. Mezhdunarodn. 44-i Vserossiisk. molodezh. shkoly-konf. “Sovremennye problemy matematiki” (Ekaterinburg, 27 yanvarya – 2 fevralya 2013), IMM UrO RAN, Ekateriburg, 2013, 397–400
[6] Gyllenberg M., Heijmans J. A. M., “An abstract delay differential equation modelling size dependent cell growth and division”, SIAM J. Math. Anal., 18 (1987), 74–88 | DOI | MR | Zbl
[7] Rey A. O., Mackey M. C., “Multistability and boundary layer development in a transport equation with delayed arguments”, Canad. Appl. Math. Quart., 1 (1993), 61–81 | Zbl
[8] Kim A. V., Pimenov V. G., $i$-gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2004
[9] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR
[10] Pimenov V. G., Lozhnikov A. B., “Raznostnaya skhema chislennogo resheniya uravneniya teploprovodnosti s posledeistviem”, Tr. IMM UrO RAN, 17, no. 1, 2011, 178–189