Periodic dyadic wavelets and coding of fractal functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2012), pp. 54-65

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently, using the Walsh–Dirichlet type kernel, the first author has defined periodic dyadic wavelets on the positive semiaxis which are similar to the Chui–Mhaskar trigonometric wavelets. In this paper we generalize this construction and give examples of applications of periodic dyadic wavelets for coding the Riemann, Weierstrass, Schwarz, van der Waerden, Hankel, and Takagi fractal functions.
Keywords: periodic dyadic wavelets, Walsh functions, Walsh–Dirichlet kernel, discrete Walsh transform, signal processing, fractal functions.
@article{IVM_2012_9_a5,
     author = {Yu. A. Farkov and M. E. Borisov},
     title = {Periodic dyadic wavelets and coding of fractal functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {54--65},
     publisher = {mathdoc},
     number = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_9_a5/}
}
TY  - JOUR
AU  - Yu. A. Farkov
AU  - M. E. Borisov
TI  - Periodic dyadic wavelets and coding of fractal functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 54
EP  - 65
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_9_a5/
LA  - ru
ID  - IVM_2012_9_a5
ER  - 
%0 Journal Article
%A Yu. A. Farkov
%A M. E. Borisov
%T Periodic dyadic wavelets and coding of fractal functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 54-65
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_9_a5/
%G ru
%F IVM_2012_9_a5
Yu. A. Farkov; M. E. Borisov. Periodic dyadic wavelets and coding of fractal functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2012), pp. 54-65. http://geodesic.mathdoc.fr/item/IVM_2012_9_a5/