Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2012_9_a5, author = {Yu. A. Farkov and M. E. Borisov}, title = {Periodic dyadic wavelets and coding of fractal functions}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {54--65}, publisher = {mathdoc}, number = {9}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2012_9_a5/} }
Yu. A. Farkov; M. E. Borisov. Periodic dyadic wavelets and coding of fractal functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2012), pp. 54-65. http://geodesic.mathdoc.fr/item/IVM_2012_9_a5/
[1] Chui C. K., Mhaskar H. N., “On trigonometric wavelets”, Constr. Approx., 9:2–3 (1993), 167–190 | DOI | MR | Zbl
[2] Skopina M. A., “Ortogonalnye polinomialnye bazisy Shaudera v $C[-1,1]$ s optimalnym rostom stepenei”, Matem. sb., 192:3 (2001), 115–136 | MR | Zbl
[3] Fischer B., Prestin J., “Wavelets based on orthogonal polynomials”, Math. Comp., 66:220 (1997), 1593–1618 | DOI | MR | Zbl
[4] Petukhov A. P., “Periodicheskie diskretnye vspleski”, Algebra i analiz, 8:3 (1996), 151–183 | MR | Zbl
[5] Petukhov A. P., “Periodicheskie vspleski”, Matem. sb., 188:10 (1997), 69–94 | MR | Zbl
[6] Skopina M., “Multiresolution analysis of periodic functions”, East J. Approx., 3:2 (1997), 203–224 | MR | Zbl
[7] Maksimenko I. E., Skopina M. A., “Mnogomernye periodicheskie vspleski”, Algebra i analiz, 15:2 (2003), 1–39 | MR | Zbl
[8] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Teoriya vspleskov, Fizmatlit, M., 2006 | MR
[9] Farkov Yu. A., “Wavelets and frames based on Walsh–Dirichlet type kernels”, Commun. Math. Appl., 1:1 (2010), 27–46 | MR | Zbl
[10] Farkov Yu. A., “Ortogonalnye veivlety s kompaktnymi nositelyami na lokalno kompaktnykh abelevykh gruppakh”, Izv. RAN. Ser. matem., 69:3 (2005), 193–220 | MR | Zbl
[11] Farkov Yu. A., “Diskretnye veivlety i preobrazovanie Vilenkina–Krestensona”, Matem. zametki, 89:6 (2011), 914–928 | MR | Zbl
[12] Farkov Yu. A., Rodionov E. A., “Algorithms for wavelet construction on Vilenkin groups”, $p$-Adic Numb. Ultr. Anal. Appl., 3:3 (2011), 181–195 | DOI | MR
[13] Farkov Yu. A., “Wavelets and frames in Walsh analysis”, Wavelets: Classification, Theory an d Applications, Chapter 11, eds. Manel del Valle et al., Nova Science Publishers, 2012, 267–304
[14] Farkov Yu. A., Stroganov S. A., “O diskretnykh diadicheskikh veivletakh dlya obrabotki izobrazhenii”, Izv. vuzov. Matem., 2011, no. 7, 57–66 | MR
[15] Farkov Yu. A., Maksimov A. Yu., Stroganov S. A., “On biorthogonal wavelets related to the Walsh functions”, Int. J. Wavelets Multiresolut. Inf. Process., 9:3 (2011), 485–499 | DOI | MR | Zbl
[16] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha: teoriya i primeneniya, Izd-vo LKI, M., 2008
[17] Golubov B. I., Elementy dvoichnogo analiza, Izd-vo LKI, M., 2007
[18] Schipp F., Wade W. R., Simon P., Walsh series: An introduction to dyadic harmonic analysis, Adam Hilger, N.Y., 1990 | MR | Zbl
[19] Farkov Yu. A., “Periodic wavelets on the $p$-adic Vilenkin group”, $p$-Adic Numb. Ultr. Anal. Appl., 3:4 (2011), 281–287 | DOI | MR
[20] Uelstid S., Fraktaly i veivlety dlya szhatiya izobrazhenii v deistvii, Fizmatlit, M., 2007
[21] Holshneider M., Wavelets: an analysis tool, Clarendon Press, Oxford, 1995 | MR
[22] Jaffard S., Meyer Y., Wavelet methods for pointwise reqularity and local oscillations of functions, Mem. Amer. Math. Soc., 587, 1996 | MR | Zbl
[23] Medvedev F. A., Ocherki istorii teorii funktsii deistvitelnogo peremennogo, KomKniga, M., 2006
[24] A. A. Potapov (red.), Noveishie metody obrabotki izobrazhenii, Fizmatlit, M., 2008