An analog of the Cook theorem for polytopes
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2012), pp. 34-42
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the polytope $M$ of any combinatorial optimization problem with a linear objective function is an affine image of a face of the cut polytope whose dimension is polynomial with respect to the dimension of $M$.
Keywords:
combinatorial optimization, cut polytope, knapsack polytope, faces, polynomial reducibility of problems.
@article{IVM_2012_8_a3,
author = {A. N. Maksimenko},
title = {An analog of the {Cook} theorem for polytopes},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {34--42},
publisher = {mathdoc},
number = {8},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2012_8_a3/}
}
A. N. Maksimenko. An analog of the Cook theorem for polytopes. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2012), pp. 34-42. http://geodesic.mathdoc.fr/item/IVM_2012_8_a3/