Geometrical properties of point correspondences of three conformal spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2012), pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study point correspondences of three conformal spaces on the base of G. F. Laptev invariant methods. We define the main equations and geometrical objects of correspondences. We construct invariant normalizations of spaces, describe the main tensors of correspondences, establish the connection of the correspondences under consideration with the theory of multidimensional $3$-webs, and obtain the torsion and curvature tensors for correspondences. For certain particular cases we prove existence theorems.
Keywords: point correspondence, invariant normalization, torsion and curvature tensors, multidimensional $3$-webs.
@article{IVM_2012_8_a0,
     author = {V. S. Bolodurin},
     title = {Geometrical properties of point correspondences of three conformal spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--14},
     publisher = {mathdoc},
     number = {8},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_8_a0/}
}
TY  - JOUR
AU  - V. S. Bolodurin
TI  - Geometrical properties of point correspondences of three conformal spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 3
EP  - 14
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_8_a0/
LA  - ru
ID  - IVM_2012_8_a0
ER  - 
%0 Journal Article
%A V. S. Bolodurin
%T Geometrical properties of point correspondences of three conformal spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 3-14
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_8_a0/
%G ru
%F IVM_2012_8_a0
V. S. Bolodurin. Geometrical properties of point correspondences of three conformal spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2012), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2012_8_a0/

[1] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii”, Tr. Mosk. matem. o-va, 2, 1953, 275–382 | MR | Zbl

[2] Akivis M. A., “K konformnoi differentsialnoi geometrii mnogomernykh poverkhnostei”, Matem. sb., 53(95):1 (1961), 53–72 | MR | Zbl

[3] Norden A. P., Prostranstva affinnoi svyaznosti, GITTL, M.-L., 1950 | MR

[4] Akivis M. A., “O tri-tkanyakh mnogomernykh poverkhnostei”, Tr. geometrich. semin., 2, VINITI AN SSSR, 1969, 7–31 | MR | Zbl

[5] Ryzhkov V. V., “Differentsialnaya geometriya tochechnykh sootvetstvii mezhdu dvumya prostranstvami”, Itogi nauki i tekhn. Geometriya, Inst. nauch. inf. AN SSSR, 1963, 65–107

[6] Finikov S. P., Metod vneshnikh form Kartana v differentsialnoi geometrii, GITTL, M.-L., 1948

[7] Bolodurin V. S., “K invariantnoi teorii tochechnykh sootvetstvii trekh proektivnykh prostranstv”, Izv. vuzov. Matem., 1982, no. 5, 9–15 | MR | Zbl