Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2012_8_a0, author = {V. S. Bolodurin}, title = {Geometrical properties of point correspondences of three conformal spaces}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--14}, publisher = {mathdoc}, number = {8}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2012_8_a0/} }
V. S. Bolodurin. Geometrical properties of point correspondences of three conformal spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2012), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2012_8_a0/
[1] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii”, Tr. Mosk. matem. o-va, 2, 1953, 275–382 | MR | Zbl
[2] Akivis M. A., “K konformnoi differentsialnoi geometrii mnogomernykh poverkhnostei”, Matem. sb., 53(95):1 (1961), 53–72 | MR | Zbl
[3] Norden A. P., Prostranstva affinnoi svyaznosti, GITTL, M.-L., 1950 | MR
[4] Akivis M. A., “O tri-tkanyakh mnogomernykh poverkhnostei”, Tr. geometrich. semin., 2, VINITI AN SSSR, 1969, 7–31 | MR | Zbl
[5] Ryzhkov V. V., “Differentsialnaya geometriya tochechnykh sootvetstvii mezhdu dvumya prostranstvami”, Itogi nauki i tekhn. Geometriya, Inst. nauch. inf. AN SSSR, 1963, 65–107
[6] Finikov S. P., Metod vneshnikh form Kartana v differentsialnoi geometrii, GITTL, M.-L., 1948
[7] Bolodurin V. S., “K invariantnoi teorii tochechnykh sootvetstvii trekh proektivnykh prostranstv”, Izv. vuzov. Matem., 1982, no. 5, 9–15 | MR | Zbl