Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2012_7_a4, author = {F. G. Avkhadiev}, title = {Isoperimetric inequality for torsional rigidity in multidimensional domains}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {45--49}, publisher = {mathdoc}, number = {7}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2012_7_a4/} }
F. G. Avkhadiev. Isoperimetric inequality for torsional rigidity in multidimensional domains. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2012), pp. 45-49. http://geodesic.mathdoc.fr/item/IVM_2012_7_a4/
[1] Timoshenko S. R., History of the strength of materials, McGraw-Hill, London, 1954 | Zbl
[2] Arutyunyan N. Kh., Abramyan B. L., Kruchenie uprugikh tel, GIFML, M., 1963
[3] Polia G., Sege G., Izoperimetricheskie neravenstva v matematicheskoi fizike, GIFML, M., 1962
[4] Bandle C., Isoperimetric inequalities and applications, Pitman Adv. Publ. Program, Boston–London–Melbourne, 1980 | MR | Zbl
[5] Avkhadiev F. G., Konformnye otobrazheniya i kraevye zadachi, Kazanskii fond “Matematika”, Kazan, 1996 | MR | Zbl
[6] Avkhadiev F. G., “Reshenie obobschennoi zadachi Sen-Venana”, Matem. sb., 189:12 (1998), 3–12 | MR | Zbl
[7] Bañuelos M., Berg Van Den M., Carrol T., “Torsional rigidity and expected lifetime of Brownnian motion”, J. London Math. Soc., 66:2 (2002), 499–512 | DOI | MR | Zbl
[8] Avkhadiev F. G., Kayumov I. R., “Comparizon theorems of isoperimetric type for moments of compact sets”, Collectanea Math., 55:3 (2004), 553–563 | MR
[9] Avkhadiev F. G., “Novye izoperimetricheskie neravenstva dlya momentov oblastei i zhestkosti krucheniya”, Izv. vuzov. Matem., 2004, no. 7, 3–11 | MR | Zbl
[10] Hadwiger H., “Konkave eikörperfunktionale und höhere Trägheitsmomente”, Comment. Math. Helv., 30:2 (1956), 285–296 | DOI | MR | Zbl
[11] Knothe H., “Contributions to the theory of convex bodies”, Michigan Math. J., 4:1 (1957), 39–52 | DOI | MR | Zbl
[12] Avkhadiev F. G., Salahudinov R. G., “Isoperimetric inequalities for conformal moments of plane domains”, J. Inequal. Appl., 7:4 (2002), 593–601 | MR | Zbl
[13] Avkhadiev F. G., “A simple proof of the Gauss–Winckler inequality”, Amer. Math. Monthly, 112:5 (2005), 459–461 | DOI | MR
[14] Keady G., “On a Brunn–Minkowski theorem for a geometric domain functional considered by Avhadiev”, JIPAM, 8:2 (2007), art. 33, 10 pp. | MR
[15] Henrot A., Philippin G. A., Safoui A., “Some isoperimetric inequalities with application to the Stekloff problem”, J. Convex Analysis, 15:3 (2008), 581–592 | MR | Zbl