Isoperimetric inequality for torsional rigidity in multidimensional domains
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2012), pp. 45-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Saint Venant functional $P$ for the torsional rigidity in arbitrary plane and space domains. Our main result is the following sharp estimate: $P\leq(4/n)m$, where $n$ is the dimension of domains and $m$ is the harmonic mean of inertial moments of a domain with respect to coordinate planes. Extremal domains are some ellipsoids. Hence, we obtain a generalization of the isoperimetric inequality, proved by E. Nicolay for the torsional rigidity of simply connected planar domains.
Keywords: isoperimetric inequality, torsional rigidity
Mots-clés : inertial moments.
@article{IVM_2012_7_a4,
     author = {F. G. Avkhadiev},
     title = {Isoperimetric inequality for torsional rigidity in multidimensional domains},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {45--49},
     publisher = {mathdoc},
     number = {7},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_7_a4/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
TI  - Isoperimetric inequality for torsional rigidity in multidimensional domains
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 45
EP  - 49
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_7_a4/
LA  - ru
ID  - IVM_2012_7_a4
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%T Isoperimetric inequality for torsional rigidity in multidimensional domains
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 45-49
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_7_a4/
%G ru
%F IVM_2012_7_a4
F. G. Avkhadiev. Isoperimetric inequality for torsional rigidity in multidimensional domains. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2012), pp. 45-49. http://geodesic.mathdoc.fr/item/IVM_2012_7_a4/

[1] Timoshenko S. R., History of the strength of materials, McGraw-Hill, London, 1954 | Zbl

[2] Arutyunyan N. Kh., Abramyan B. L., Kruchenie uprugikh tel, GIFML, M., 1963

[3] Polia G., Sege G., Izoperimetricheskie neravenstva v matematicheskoi fizike, GIFML, M., 1962

[4] Bandle C., Isoperimetric inequalities and applications, Pitman Adv. Publ. Program, Boston–London–Melbourne, 1980 | MR | Zbl

[5] Avkhadiev F. G., Konformnye otobrazheniya i kraevye zadachi, Kazanskii fond “Matematika”, Kazan, 1996 | MR | Zbl

[6] Avkhadiev F. G., “Reshenie obobschennoi zadachi Sen-Venana”, Matem. sb., 189:12 (1998), 3–12 | MR | Zbl

[7] Bañuelos M., Berg Van Den M., Carrol T., “Torsional rigidity and expected lifetime of Brownnian motion”, J. London Math. Soc., 66:2 (2002), 499–512 | DOI | MR | Zbl

[8] Avkhadiev F. G., Kayumov I. R., “Comparizon theorems of isoperimetric type for moments of compact sets”, Collectanea Math., 55:3 (2004), 553–563 | MR

[9] Avkhadiev F. G., “Novye izoperimetricheskie neravenstva dlya momentov oblastei i zhestkosti krucheniya”, Izv. vuzov. Matem., 2004, no. 7, 3–11 | MR | Zbl

[10] Hadwiger H., “Konkave eikörperfunktionale und höhere Trägheitsmomente”, Comment. Math. Helv., 30:2 (1956), 285–296 | DOI | MR | Zbl

[11] Knothe H., “Contributions to the theory of convex bodies”, Michigan Math. J., 4:1 (1957), 39–52 | DOI | MR | Zbl

[12] Avkhadiev F. G., Salahudinov R. G., “Isoperimetric inequalities for conformal moments of plane domains”, J. Inequal. Appl., 7:4 (2002), 593–601 | MR | Zbl

[13] Avkhadiev F. G., “A simple proof of the Gauss–Winckler inequality”, Amer. Math. Monthly, 112:5 (2005), 459–461 | DOI | MR

[14] Keady G., “On a Brunn–Minkowski theorem for a geometric domain functional considered by Avhadiev”, JIPAM, 8:2 (2007), art. 33, 10 pp. | MR

[15] Henrot A., Philippin G. A., Safoui A., “Some isoperimetric inequalities with application to the Stekloff problem”, J. Convex Analysis, 15:3 (2008), 581–592 | MR | Zbl