Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2012_7_a0, author = {V. M. Deundyak and E. I. Miroshnikova}, title = {The boundedness and the {Fredholm} property of integral operators with anisotropically homogeneous kernels of compact type and variable coefficients}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--17}, publisher = {mathdoc}, number = {7}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2012_7_a0/} }
TY - JOUR AU - V. M. Deundyak AU - E. I. Miroshnikova TI - The boundedness and the Fredholm property of integral operators with anisotropically homogeneous kernels of compact type and variable coefficients JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2012 SP - 3 EP - 17 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2012_7_a0/ LA - ru ID - IVM_2012_7_a0 ER -
%0 Journal Article %A V. M. Deundyak %A E. I. Miroshnikova %T The boundedness and the Fredholm property of integral operators with anisotropically homogeneous kernels of compact type and variable coefficients %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2012 %P 3-17 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2012_7_a0/ %G ru %F IVM_2012_7_a0
V. M. Deundyak; E. I. Miroshnikova. The boundedness and the Fredholm property of integral operators with anisotropically homogeneous kernels of compact type and variable coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2012), pp. 3-17. http://geodesic.mathdoc.fr/item/IVM_2012_7_a0/
[1] Mikhailov L. G., “Novyi klass osobykh integralnykh uravnenii”, Math. Nachr., 76 (1977), 91–107 | DOI
[2] Karapetyants N. K., “O neobkhodimykh usloviyakh ogranichennosti operatora s neotritsatelnym kvaziodnorodnym yadrom”, Matem. zametki, 30:5 (1981), 787–794 | MR | Zbl
[3] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, GIIL, M., 1948
[4] Karapetiants N., Samko S., Equations with involutive operators, Birkhäuser, Boston–Basel–Berlin, 2001 | MR | Zbl
[5] Avsyankin O. G., Karapetyants N. K., “Ob algebre mnogomernykh integralnykh operatorov s odnorodnymi yadrami s peremennymi koeffitsientami”, Izv. vuzov. Matem., 2001, no. 1, 3–10 | MR | Zbl
[6] Avsyankin O. G., “Ob algebre parnykh integralnykh operatorov s odnorodnymi yadrami”, Matem. zametki, 73:4 (2003), 483–493 | MR | Zbl
[7] Avsyankin O. G., Deundyak V. M., “Ob indekse mnogomernykh integralnykh operatorov s biodnorodnymi yadrami i peremennymi koeffitsientami”, Izv. vuzov. Matem., 2005, no. 3, 3–12 | MR | Zbl
[8] Samko S. G., Gipersingulyarnye integraly i ikh prilozheniya, Izd-vo RGU, Rostov-na-Donu, 1984 | MR | Zbl
[9] Deundyak V. M., “Mnogomernye integralnye operatory s odnorodnymi yadrami kompaktnogo tipa i multiplikativno slabo ostsilliruyuschimi koeffitsientami”, Matem. zametki, 87:5 (2010), 704–720 | MR
[10] Plamenevskii B. A., Algebry psevdodifferentsialnykh operatorov, Nauka, M., 1986 | MR
[11] Rabinovich V., Roch S., Silbermann B., Limit operators and their applications in operator theory, Birkhäuser, Boston–Basel–Berlin, 2004 | MR
[12] Simonenko I. B., “Operatory tipa svertki v konusakh”, Matem. sb., 74(116):2 (1967), 298–313 | MR | Zbl
[13] Deundyak V. M., Miroshnikova E. I., “Mnogomernye multiplikativnye svertki i ikh prilozheniya k teorii operatorov s odnorodnymi yadrami”, Tr. nauch. shkoly I. B. Simonenko, sb., Rostov-na-Donu, 2010, 67–78
[14] Rabinovich V., Schulze B.-W., Tarkhanov N., “$C^\ast$-algebras of singular integral operators in domains with oscillating conical singularities”, Manuscripta math., 108:1 (2002), 69–90 | DOI | MR | Zbl
[15] Miroshnikova E. I., Deundyak V. M., “Mnogomernye integralnye operatory s anizotropno odnorodnymi yadrami kompaktnogo tipa”, Tezisy dokladov mezhd. konf. po diff. uravneniyam i dinam. sistemam (Suzdal, 2–7 iyulya 2010), MIRAN, M., 2010, 135–136
[16] Korotkov V. B., Integralnye operatory, Nauka, Novosibirsk, 1983 | MR | Zbl
[17] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl
[18] Shteinberg B. Ya., “Ob operatorakh tipa svertki na lokalno kompaktnykh gruppakh”, Funkts. analiz i ego prilozh., 15:3 (1981), 95–96 | MR | Zbl
[19] Cordess H. O., “On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators”, J. Func. Anal., 18:2 (1975), 115–131 | DOI | MR
[20] Deundyak V. M., Shteinberg B. Ya., “Ob indekse operatorov svertki s medlenno izmenyayuschimisya koeffitsientami na abelevykh gruppakh”, Funkts. analiz i ego prilozh., 19:4 (1985), 84–85 | MR | Zbl
[21] Kuratovskii K., Topologiya, v. 1, Nauka, M., 1971
[22] Simonenko I. B., Lokalnyi metod v teorii invariantnykh otnositelno sdviga operatorov i ikh ogibayuschikh, TsVVR, Rostov-na-Donu, 2007