The boundedness and the Fredholm property of integral operators with anisotropically homogeneous kernels of compact type and variable coefficients
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2012), pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space $L_p(\mathbb R^n)$, $1$, we study a new wide class of integral operators with anisotropically homogeneous kernels. We obtain sufficient conditions for the boundedness of operators from this class. We consider the Banach algebra generated by operators with anisotropically homogeneous kernels of compact type and multiplicatively slowly oscillating coefficients. We establish a relationship between this algebra and multidimensional convolution operators, and construct a symbolic calculus for it. We also obtain necessary and sufficient conditions for the Fredholm property of operators from this algebra.
Keywords: integral operators, homogeneous kernels, convolution operators, boundedness, fredholmness.
@article{IVM_2012_7_a0,
     author = {V. M. Deundyak and E. I. Miroshnikova},
     title = {The boundedness and the {Fredholm} property of integral operators with anisotropically homogeneous kernels of compact type and variable coefficients},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--17},
     publisher = {mathdoc},
     number = {7},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_7_a0/}
}
TY  - JOUR
AU  - V. M. Deundyak
AU  - E. I. Miroshnikova
TI  - The boundedness and the Fredholm property of integral operators with anisotropically homogeneous kernels of compact type and variable coefficients
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 3
EP  - 17
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_7_a0/
LA  - ru
ID  - IVM_2012_7_a0
ER  - 
%0 Journal Article
%A V. M. Deundyak
%A E. I. Miroshnikova
%T The boundedness and the Fredholm property of integral operators with anisotropically homogeneous kernels of compact type and variable coefficients
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 3-17
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_7_a0/
%G ru
%F IVM_2012_7_a0
V. M. Deundyak; E. I. Miroshnikova. The boundedness and the Fredholm property of integral operators with anisotropically homogeneous kernels of compact type and variable coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2012), pp. 3-17. http://geodesic.mathdoc.fr/item/IVM_2012_7_a0/

[1] Mikhailov L. G., “Novyi klass osobykh integralnykh uravnenii”, Math. Nachr., 76 (1977), 91–107 | DOI

[2] Karapetyants N. K., “O neobkhodimykh usloviyakh ogranichennosti operatora s neotritsatelnym kvaziodnorodnym yadrom”, Matem. zametki, 30:5 (1981), 787–794 | MR | Zbl

[3] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, GIIL, M., 1948

[4] Karapetiants N., Samko S., Equations with involutive operators, Birkhäuser, Boston–Basel–Berlin, 2001 | MR | Zbl

[5] Avsyankin O. G., Karapetyants N. K., “Ob algebre mnogomernykh integralnykh operatorov s odnorodnymi yadrami s peremennymi koeffitsientami”, Izv. vuzov. Matem., 2001, no. 1, 3–10 | MR | Zbl

[6] Avsyankin O. G., “Ob algebre parnykh integralnykh operatorov s odnorodnymi yadrami”, Matem. zametki, 73:4 (2003), 483–493 | MR | Zbl

[7] Avsyankin O. G., Deundyak V. M., “Ob indekse mnogomernykh integralnykh operatorov s biodnorodnymi yadrami i peremennymi koeffitsientami”, Izv. vuzov. Matem., 2005, no. 3, 3–12 | MR | Zbl

[8] Samko S. G., Gipersingulyarnye integraly i ikh prilozheniya, Izd-vo RGU, Rostov-na-Donu, 1984 | MR | Zbl

[9] Deundyak V. M., “Mnogomernye integralnye operatory s odnorodnymi yadrami kompaktnogo tipa i multiplikativno slabo ostsilliruyuschimi koeffitsientami”, Matem. zametki, 87:5 (2010), 704–720 | MR

[10] Plamenevskii B. A., Algebry psevdodifferentsialnykh operatorov, Nauka, M., 1986 | MR

[11] Rabinovich V., Roch S., Silbermann B., Limit operators and their applications in operator theory, Birkhäuser, Boston–Basel–Berlin, 2004 | MR

[12] Simonenko I. B., “Operatory tipa svertki v konusakh”, Matem. sb., 74(116):2 (1967), 298–313 | MR | Zbl

[13] Deundyak V. M., Miroshnikova E. I., “Mnogomernye multiplikativnye svertki i ikh prilozheniya k teorii operatorov s odnorodnymi yadrami”, Tr. nauch. shkoly I. B. Simonenko, sb., Rostov-na-Donu, 2010, 67–78

[14] Rabinovich V., Schulze B.-W., Tarkhanov N., “$C^\ast$-algebras of singular integral operators in domains with oscillating conical singularities”, Manuscripta math., 108:1 (2002), 69–90 | DOI | MR | Zbl

[15] Miroshnikova E. I., Deundyak V. M., “Mnogomernye integralnye operatory s anizotropno odnorodnymi yadrami kompaktnogo tipa”, Tezisy dokladov mezhd. konf. po diff. uravneniyam i dinam. sistemam (Suzdal, 2–7 iyulya 2010), MIRAN, M., 2010, 135–136

[16] Korotkov V. B., Integralnye operatory, Nauka, Novosibirsk, 1983 | MR | Zbl

[17] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[18] Shteinberg B. Ya., “Ob operatorakh tipa svertki na lokalno kompaktnykh gruppakh”, Funkts. analiz i ego prilozh., 15:3 (1981), 95–96 | MR | Zbl

[19] Cordess H. O., “On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators”, J. Func. Anal., 18:2 (1975), 115–131 | DOI | MR

[20] Deundyak V. M., Shteinberg B. Ya., “Ob indekse operatorov svertki s medlenno izmenyayuschimisya koeffitsientami na abelevykh gruppakh”, Funkts. analiz i ego prilozh., 19:4 (1985), 84–85 | MR | Zbl

[21] Kuratovskii K., Topologiya, v. 1, Nauka, M., 1971

[22] Simonenko I. B., Lokalnyi metod v teorii invariantnykh otnositelno sdviga operatorov i ikh ogibayuschikh, TsVVR, Rostov-na-Donu, 2007