On the A.\,M.~Bikchentaev conjecture
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2012), pp. 67-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1998 A. M. Bikchentaev conjectured that for positive $\tau$-measurable operators $a$ and $b$ affiliated with a semifinite von Neumann algebra, the operator $b^{1/2}ab^{1/2}$ is submajorized by the operator $ab$ in the sense of Hardy–Littlewood. We prove this conjecture in its full generality and obtain a number of consequences for operator ideals, Golden–Thompson inequalities, and singular traces.
Keywords: von Neumann algebra, normal trace, $\tau$-measurable operator, Hardy–Littlewood submajorization, Golden–Thompson inequality, singular trace.
@article{IVM_2012_6_a7,
     author = {F. A. Sukochev},
     title = {On the {A.\,M.~Bikchentaev} conjecture},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {67--70},
     publisher = {mathdoc},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_6_a7/}
}
TY  - JOUR
AU  - F. A. Sukochev
TI  - On the A.\,M.~Bikchentaev conjecture
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 67
EP  - 70
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_6_a7/
LA  - ru
ID  - IVM_2012_6_a7
ER  - 
%0 Journal Article
%A F. A. Sukochev
%T On the A.\,M.~Bikchentaev conjecture
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 67-70
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_6_a7/
%G ru
%F IVM_2012_6_a7
F. A. Sukochev. On the A.\,M.~Bikchentaev conjecture. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2012), pp. 67-70. http://geodesic.mathdoc.fr/item/IVM_2012_6_a7/

[1] Bikchentaev A. M., “Majorization for products of measurable operators”, Internat. J. Theoret. Phys., 37:1 (1998), 571–576 | DOI | MR | Zbl

[2] Dixmier J., Les algebres d'operateurs dans l'espace hilbertien, 2 Ed., Gauthier-Villars, Paris, 1969 | MR | Zbl

[3] Takesaki M., Theory of operator algebras, v. I, Springer-Verlag, New York, 1979 | MR

[4] Fack T., Kosaki H., “Generalized $s$-numbers of $\tau$-measurable operators”, Pacific J. Math., 123:2 (1986), 269–300 | MR | Zbl

[5] Bikchentaev A. M., “Ob odnom svoistve $L_p$-prostranstv na polukonechnykh algebrakh fon Neimana”, Matem. zametki, 64:2 (1998), 185–190 | MR | Zbl

[6] Kalton N., Sukochev F., “Symmetric norms and spaces of operators”, J. Reine Angew. Math., 621 (2008), 81–121 | DOI | MR | Zbl

[7] Simon B., Trace ideals and their applications, Mathematical Surveys and Monographs, 120, Second Ed., American Mathematical Society, Providence, RI, 2005 | MR | Zbl

[8] Sukochev F., Zanin D., “Traces on symmetrically normed operator ideals”, J. Reine Angew. Math. (to appear)

[9] Kalton N., Lord S., Potapov D., Sukochev F., “Traces on compact operators and connes trace theorem” (to appear)

[10] Kalton N., “Spectral characterization of sums of commutators. I”, J. Reine Angew. Math., 504 (1998), 115–125 | DOI | MR | Zbl

[11] Kosaki H., “Arithmetic-geometric mean and related inequalities for operators”, J. Funct. Anal., 156:2 (1998), 429–451 | DOI | MR | Zbl