Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2012_6_a0, author = {B. I. Golubov}, title = {Absolute convergence of double series of {Fourier--Haar} coefficients for functions of bounded $p$-variation}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--13}, publisher = {mathdoc}, number = {6}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2012_6_a0/} }
TY - JOUR AU - B. I. Golubov TI - Absolute convergence of double series of Fourier--Haar coefficients for functions of bounded $p$-variation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2012 SP - 3 EP - 13 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2012_6_a0/ LA - ru ID - IVM_2012_6_a0 ER -
B. I. Golubov. Absolute convergence of double series of Fourier--Haar coefficients for functions of bounded $p$-variation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2012), pp. 3-13. http://geodesic.mathdoc.fr/item/IVM_2012_6_a0/
[1] Haar A., Zur Theorie der orthogonalen Funktionensysteme, Inauguraldissertation, Göttingen Univ., 1909
[2] Haar A., “Zur Theorie der orthogonalen Funktionensysteme”, Math. Ann., 69 (1910), 331–371 | DOI | MR | Zbl
[3] Faber G., “Über die Orthogonalfunktionen des Herrn Haar”, Jahresberichte Deutsch. Math. Verein., 19 (1910), 104–112 | Zbl
[4] Schauder J., “Zur Theorie stetiger Abbildungen in Funktionalräumen”, Math. Zeit., 26 (1927), 47–65 | DOI | MR | Zbl
[5] Schauder J., “Eine Eigenschaft des Haarschen Orthogonalsystems”, Math. Zeit., 28 (1928), 317–320 | DOI | MR | Zbl
[6] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, Fizmatgiz, M., 1958 | MR
[7] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl
[8] Golubov B. I., “Ryady po sisteme Khaara”, Itogi nauki. Ser. Matematika. Mat. anal. 1970, VINITI, M., 1971, 109–146 | MR | Zbl
[9] Ciesielski Z., Musielak J., “On absolute convergence of Haar series”, Colloq. Math., 7:1 (1959), 61–65 | MR | Zbl
[10] Ulyanov P. L., “O ryadakh po sisteme Khaara”, Matem. sb., 63(105):3 (1964), 356–391 | MR | Zbl
[11] Golubov B. I., “O ryadakh Fure nepreryvnykh funktsii po sisteme Khaara”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1271–1296 | MR | Zbl
[12] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR
[13] Hardy G. H., “Weierstrass nondifferentiable function”, Trans. Amer. Math. Soc., 17 (1916), 301–325 | MR | Zbl
[14] Hardy G. H., “On double Fourier series and especially those which represent the double zeta-function with real and incommensurable parameters”, Quart. J. Math., 37:1 (1905), 57–79
[15] Ciesielski Z., “On Haar functions and on the Shauder basis of the space $C(0,1)$”, Bull. Acad. Polon. Sci., 7 (1959), 227–232 | MR | Zbl
[16] Zigmund A., Trigonometricheskie ryady, GONTI, M.–L., 1939
[17] Tabatadze G. Z., “Ob absolyutnoi skhodimosti ryadov Fure–Khaara”, Soobsch. AN GruzSSR, 103:3 (1981), 541–543 | MR | Zbl
[18] Tsagareishvili V. Sh., “O koeffitsientakh Fure–Khaara”, Soobsch. AN GruzSSR, 81:1 (1976), 29–31 | MR
[19] Goginava U., “On the uniform summability of multiple Walsh–Fourier series”, Anal. Math., 26:3 (2000), 209–226 | DOI | MR | Zbl
[20] Goginava U., “Uniform convergence of $N$-dimensional trigonometric Fourier series”, Georgian Math. J., 7:4 (2000), 665–676 | MR | Zbl
[21] Aplakov A., “Absolute convergence of the double series of Fourier–Haar coefficients”, Acta Math. Acad. Paedag. Nyiregyhaz., 22 (2006), 33–39 | MR | Zbl
[22] Vitali G., “Sui gruppi di punti e sulle funzioni di variable”, Atti Accad. Sci. Torino, 43 (1908), 75–92
[23] Lebesgue A., “Sur l'integration des functions discontinue”, Ann. de L'Ecole Norm. Ser. 3, 27 (1910), 361–450 | MR | Zbl
[24] Gogoladze L., Tsagareishvili V., “Absolute convergence of multiple Fourier series”, Georgian Mathematical Union, First Intern. Conf. (Batumi, Sept. 12–19, 2010), Book of abstracts, 2010, 24–25