Absolute convergence of double series of Fourier--Haar coefficients for functions of bounded $p$-variation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2012), pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider functions of two variables of bounded $p$-variation of the Hardy type on the unit square. For these functions we obtain a sufficient condition for the absolute convergence of series of positive powers of Fourier coefficients with power-type weights with respect to the double Haar system. This condition implies those for the absolute convergence of the Fourier–Haar series for functions of one variable, provided that they have a bounded Wiener $p$-variation or belong to the class $\operatorname{Lip}\alpha$. We show that the obtained results are unimprovable. We also formulate $N$-dimensional analogs of the main result and its corollaries.
Keywords: double Haar system, functions of two variables of bounded $p$-variation.
Mots-clés : Fourier–Haar coefficients
@article{IVM_2012_6_a0,
     author = {B. I. Golubov},
     title = {Absolute convergence of double series of {Fourier--Haar} coefficients for functions of bounded $p$-variation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--13},
     publisher = {mathdoc},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_6_a0/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - Absolute convergence of double series of Fourier--Haar coefficients for functions of bounded $p$-variation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 3
EP  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_6_a0/
LA  - ru
ID  - IVM_2012_6_a0
ER  - 
%0 Journal Article
%A B. I. Golubov
%T Absolute convergence of double series of Fourier--Haar coefficients for functions of bounded $p$-variation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 3-13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_6_a0/
%G ru
%F IVM_2012_6_a0
B. I. Golubov. Absolute convergence of double series of Fourier--Haar coefficients for functions of bounded $p$-variation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2012), pp. 3-13. http://geodesic.mathdoc.fr/item/IVM_2012_6_a0/

[1] Haar A., Zur Theorie der orthogonalen Funktionensysteme, Inauguraldissertation, Göttingen Univ., 1909

[2] Haar A., “Zur Theorie der orthogonalen Funktionensysteme”, Math. Ann., 69 (1910), 331–371 | DOI | MR | Zbl

[3] Faber G., “Über die Orthogonalfunktionen des Herrn Haar”, Jahresberichte Deutsch. Math. Verein., 19 (1910), 104–112 | Zbl

[4] Schauder J., “Zur Theorie stetiger Abbildungen in Funktionalräumen”, Math. Zeit., 26 (1927), 47–65 | DOI | MR | Zbl

[5] Schauder J., “Eine Eigenschaft des Haarschen Orthogonalsystems”, Math. Zeit., 28 (1928), 317–320 | DOI | MR | Zbl

[6] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, Fizmatgiz, M., 1958 | MR

[7] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl

[8] Golubov B. I., “Ryady po sisteme Khaara”, Itogi nauki. Ser. Matematika. Mat. anal. 1970, VINITI, M., 1971, 109–146 | MR | Zbl

[9] Ciesielski Z., Musielak J., “On absolute convergence of Haar series”, Colloq. Math., 7:1 (1959), 61–65 | MR | Zbl

[10] Ulyanov P. L., “O ryadakh po sisteme Khaara”, Matem. sb., 63(105):3 (1964), 356–391 | MR | Zbl

[11] Golubov B. I., “O ryadakh Fure nepreryvnykh funktsii po sisteme Khaara”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1271–1296 | MR | Zbl

[12] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[13] Hardy G. H., “Weierstrass nondifferentiable function”, Trans. Amer. Math. Soc., 17 (1916), 301–325 | MR | Zbl

[14] Hardy G. H., “On double Fourier series and especially those which represent the double zeta-function with real and incommensurable parameters”, Quart. J. Math., 37:1 (1905), 57–79

[15] Ciesielski Z., “On Haar functions and on the Shauder basis of the space $C(0,1)$”, Bull. Acad. Polon. Sci., 7 (1959), 227–232 | MR | Zbl

[16] Zigmund A., Trigonometricheskie ryady, GONTI, M.–L., 1939

[17] Tabatadze G. Z., “Ob absolyutnoi skhodimosti ryadov Fure–Khaara”, Soobsch. AN GruzSSR, 103:3 (1981), 541–543 | MR | Zbl

[18] Tsagareishvili V. Sh., “O koeffitsientakh Fure–Khaara”, Soobsch. AN GruzSSR, 81:1 (1976), 29–31 | MR

[19] Goginava U., “On the uniform summability of multiple Walsh–Fourier series”, Anal. Math., 26:3 (2000), 209–226 | DOI | MR | Zbl

[20] Goginava U., “Uniform convergence of $N$-dimensional trigonometric Fourier series”, Georgian Math. J., 7:4 (2000), 665–676 | MR | Zbl

[21] Aplakov A., “Absolute convergence of the double series of Fourier–Haar coefficients”, Acta Math. Acad. Paedag. Nyiregyhaz., 22 (2006), 33–39 | MR | Zbl

[22] Vitali G., “Sui gruppi di punti e sulle funzioni di variable”, Atti Accad. Sci. Torino, 43 (1908), 75–92

[23] Lebesgue A., “Sur l'integration des functions discontinue”, Ann. de L'Ecole Norm. Ser. 3, 27 (1910), 361–450 | MR | Zbl

[24] Gogoladze L., Tsagareishvili V., “Absolute convergence of multiple Fourier series”, Georgian Mathematical Union, First Intern. Conf. (Batumi, Sept. 12–19, 2010), Book of abstracts, 2010, 24–25