Time localization of Alpert multiwavelets
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2012), pp. 72-74
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the behavior of radii of Alpert multiscaling functions of arbitrary dimensions. We calculate the radii up to the 4th order for the corresponding multiwavelets. In addition, we obtain an integral correlation for the Legendre polynomials.
Keywords:
multiwavelet, multiscaling function, radii of vector functions.
Mots-clés : Legendre polynomials
Mots-clés : Legendre polynomials
@article{IVM_2012_5_a7,
author = {P. G. Severov},
title = {Time localization of {Alpert} multiwavelets},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {72--74},
year = {2012},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2012_5_a7/}
}
P. G. Severov. Time localization of Alpert multiwavelets. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2012), pp. 72-74. http://geodesic.mathdoc.fr/item/IVM_2012_5_a7/
[1] Jiang Qingtang, “Orthogonal multiwavelets with optimum time-frequency resolution”, Signal Processing, IEEE Trans. Signal Process, 46:4 (1998), 830–844 | DOI | MR
[2] Keinert F., Wavelet and multiwavelet, Chapman Hall/CRC, 2004 | MR | Zbl
[3] Alpert B., Beylkin G., Gines D., Vozovoi L., “Adaptive solution of partial differential equations in multiwavelet bases”, J. Comput. Phys., 182:1 (2002), 149–190 | DOI | MR | Zbl
[4] Alpert B. K., “Wavelets and other bases for fast numerical linear algebra”, Wavelets: A tutorial in theory and applications, ed. C. K. Chui, Academic Press, New York, 1992, 181–216 | MR