Time localization of Alpert multiwavelets
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2012), pp. 72-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the behavior of radii of Alpert multiscaling functions of arbitrary dimensions. We calculate the radii up to the 4th order for the corresponding multiwavelets. In addition, we obtain an integral correlation for the Legendre polynomials.
Keywords: multiwavelet, multiscaling function, radii of vector functions.
Mots-clés : Legendre polynomials
@article{IVM_2012_5_a7,
     author = {P. G. Severov},
     title = {Time localization of {Alpert} multiwavelets},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {72--74},
     publisher = {mathdoc},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_5_a7/}
}
TY  - JOUR
AU  - P. G. Severov
TI  - Time localization of Alpert multiwavelets
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 72
EP  - 74
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_5_a7/
LA  - ru
ID  - IVM_2012_5_a7
ER  - 
%0 Journal Article
%A P. G. Severov
%T Time localization of Alpert multiwavelets
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 72-74
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_5_a7/
%G ru
%F IVM_2012_5_a7
P. G. Severov. Time localization of Alpert multiwavelets. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2012), pp. 72-74. http://geodesic.mathdoc.fr/item/IVM_2012_5_a7/

[1] Jiang Qingtang, “Orthogonal multiwavelets with optimum time-frequency resolution”, Signal Processing, IEEE Trans. Signal Process, 46:4 (1998), 830–844 | DOI | MR

[2] Keinert F., Wavelet and multiwavelet, Chapman Hall/CRC, 2004 | MR | Zbl

[3] Alpert B., Beylkin G., Gines D., Vozovoi L., “Adaptive solution of partial differential equations in multiwavelet bases”, J. Comput. Phys., 182:1 (2002), 149–190 | DOI | MR | Zbl

[4] Alpert B. K., “Wavelets and other bases for fast numerical linear algebra”, Wavelets: A tutorial in theory and applications, ed. C. K. Chui, Academic Press, New York, 1992, 181–216 | MR