A majorant-minorant criterion for the total preservation of global solvability of a~functional operator equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2012), pp. 62-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a nonlinear controlled functional operator equation in an ideal Banach space. We establish sufficient conditions for the global solvability for all controls from a given set, and obtain a pointwise estimate for solutions. Using upper and lower estimates of the functional component in the right-hand side of the initial equation (with a fixed operator component), we obtain majorant and minorant equations.We prove the stated theorem, assuming the monotonicity of the operator component in the right-hand side and the global solvability of both majorant and minorant equations. We give examples of the reduction of controlled initial boundary value problems to the equation under consideration.
Keywords: total preservation of global solvability, functional operator equation, pointwise estimate of solutions.
@article{IVM_2012_3_a7,
     author = {A. V. Chernov},
     title = {A majorant-minorant criterion for the total preservation of global solvability of a~functional operator equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {62--73},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_3_a7/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - A majorant-minorant criterion for the total preservation of global solvability of a~functional operator equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 62
EP  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_3_a7/
LA  - ru
ID  - IVM_2012_3_a7
ER  - 
%0 Journal Article
%A A. V. Chernov
%T A majorant-minorant criterion for the total preservation of global solvability of a~functional operator equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 62-73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_3_a7/
%G ru
%F IVM_2012_3_a7
A. V. Chernov. A majorant-minorant criterion for the total preservation of global solvability of a~functional operator equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2012), pp. 62-73. http://geodesic.mathdoc.fr/item/IVM_2012_3_a7/

[1] Chernov A. V., “O potochechnoi otsenke raznosti reshenii upravlyaemogo funktsionalno-operatornogo uravneniya v lebegovykh prostranstvakh”, Matem. zametki, 88:2 (2010), 288–302 | Zbl

[2] Chernov A. V., “K voprosu o skhodimosti metoda uslovnogo gradienta v raspredelennykh zadachakh optimizatsii”, Vestn. Nizhegorodsk. un-ta im. N. I. Lobachevskogo, 2010, no. 2, 124–130

[3] Chernov A. V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matem., 2011, no. 3, 95–107 | Zbl

[4] Kalantarov V. K., Ladyzhenskaya O. A., “O vozniknovenii kollapsov dlya kvazilineinykh uravnenii parabolicheskogo i giperbolicheskogo tipov”, Zap. nauchn. semin. LOMI, 69, 1977, 77–102 | MR | Zbl

[5] Sumin V. I., “Ob obosnovanii gradientnykh metodov dlya raspredelennykh zadach optimalnogo upravleniya”, Zhurn. vychisl. matem. i matem. fiz., 30:1 (1990), 3–21 | MR | Zbl

[6] Sumin V. I., Funktsionalnye volterrovy uravneniya v teorii optimalnogo upravleniya raspredelennymi sistemami, Ch. I, Izd-vo NNGU, N. Novgorod, 1992

[7] Chernov A. V., “O volterrovykh funktsionalno-operatornykh igrakh”, Tr. Sedmoi Vserossiiskoi nauchnoi konf. s mezhdunarodnym uchastiem, Ch. 2, Matem. modelirovanie i kraevye zadachi, izd-vo SamGTU, Samara, 2010, 289–291

[8] Sumin V. I., “O funktsionalnykh volterrovykh uravneniyakh”, Izv. vuzov. Matem., 1995, no. 9, 67–77 | MR | Zbl

[9] Sumin V. I., “Upravlyaemye funktsionalnye volterrovy uravneniya v lebegovykh prostranstvakh”, Vestn. Nizhegorodsk. un-ta. Ser. Matem. modelir. i optimalnoe upravlenie, 1998, no. 2, 138–151

[10] Sumin V. I., Chernov A. V., “O dostatochnykh usloviyakh ustoichivosti suschestvovaniya globalnykh reshenii volterrovykh operatornykh uravnenii”, Vestn. Nizhegorodsk. un-ta im. N. I. Lobachevskogo. Ser. Matem. modelir. i optimalnoe upravlenie, 2003, no. 1, 39–49

[11] Sumin V. I., Chernov A. V., “Operatory v prostranstvakh izmerimykh funktsii: volterrovost i kvazinilpotentnost”, Differents. uravneniya, 34:10 (1998), 1402–1411 | MR | Zbl

[12] Sumin V. I., Chernov A. V., “O nekotorykh priznakakh kvazinilpotentnosti funktsionalnykh operatorov”, Izv. vuzov. Matem., 2000, no. 2, 77–80 | MR | Zbl

[13] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[14] Stepanov V. V., Kurs differentsialnykh uravnenii, GITTL, M., 1953

[15] Blagodatskikh V. I., “O differentsiruemosti reshenii po nachalnym usloviyam”, Differents. uravneniya, 9:1 (1973), 2136–2140

[16] Chernov A. V., Volterrovy operatornye uravneniya i ikh primenenie v teorii optimizatsii giperbolicheskikh sistem, Diss. $\dots$ kand. fiz.-matem. nauk, NNGU, N. Novgorod, 2000

[17] Shvarts L., Analiz, v. 1, Mir, M., 1972

[18] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[19] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[20] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR

[21] Birkgof G., Teoriya reshetok, Nauka, M., 1984 | MR