One nonlocal problem of determination of the temperature and density of heat sources
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 70-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider one family of problems simulating the determination of the temperature and density of heat sources from given values of the initial and final temperature. The mathematical statement of these problems leads to the inverse problem for the heat equation, where it is required to find not only a solution of the problem, but also its right-hand side that depends only on a spatial variable. A specific feature of the considered problems is that the system of eigenfunctions of the multiple differentiation operator subject to boundary conditions of the initial problem does not have the basis property. We prove the unique existence of a generalized solution to the mentioned problem.
Keywords: inverse problem, heat equation, initial temperature, final temperature, not strongly regular boundary conditions, Samarskii–Ionkin boundary conditions, Riesz basis.
Mots-clés : biorthogonal Fourier series
@article{IVM_2012_2_a7,
     author = {I. Orazov and M. A. Sadybekov},
     title = {One nonlocal problem of determination of the temperature and density of heat sources},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {70--75},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_2_a7/}
}
TY  - JOUR
AU  - I. Orazov
AU  - M. A. Sadybekov
TI  - One nonlocal problem of determination of the temperature and density of heat sources
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 70
EP  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_2_a7/
LA  - ru
ID  - IVM_2012_2_a7
ER  - 
%0 Journal Article
%A I. Orazov
%A M. A. Sadybekov
%T One nonlocal problem of determination of the temperature and density of heat sources
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 70-75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_2_a7/
%G ru
%F IVM_2012_2_a7
I. Orazov; M. A. Sadybekov. One nonlocal problem of determination of the temperature and density of heat sources. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 70-75. http://geodesic.mathdoc.fr/item/IVM_2012_2_a7/

[1] Anikonov Yu. E., Belov Yu. Ya., “Ob odnoznachnoi razreshimosti odnoi obratnoi zadachi dlya parabolicheskogo uravneniya”, DAN SSSR, 306:6 (1989), 1289–1293 | MR | Zbl

[2] Anikonov Yu. E., Bubnov B. A., “Suschestvovanie i edinstvennost resheniya obratnoi zadachi dlya parabolicheskogo uravneniya”, DAN SSSR, 298:4 (1988), 777–779 | MR | Zbl

[3] Bubnov B. A., “Suschestvovanie i edinstvennost resheniya obratnykh zadach dlya parabolicheskikh i ellipticheskikh uravnenii”, Neklassicheskie uravneniya matematicheskoi fiziki, Sb. nauchn. tr., Izd-vo In-ta matematiki, Novosibirsk, 1986, 25–29 | MR

[4] Prilepko A. I., Kostin A. B., “O nekotorykh obratnykh zadachakh dlya parabolicheskikh uravnenii s finalnym i integralnym nablyudeniem”, Matem. sb., 183:4 (1992), 49–68 | MR | Zbl

[5] Kozhanov A. I., “Nelineinye nagruzhennye uravneniya i obratnye zadachi”, Zhurn. vychisl. matem. i matem. fiziki, 44:4 (2004), 694–716 | MR | Zbl

[6] Monakhov V. N., “Obratnye zadachi dlya relaksatsionnykh modelei gidrodinamiki”, Vestn. Novosib. gos. un-ta. Ser. Matematika, mekhanika, informatika, 3:3 (2003), 72–80

[7] Kaliev I. A., Pervushina M. M., “Obratnye zadachi dlya uravneniya teploprovodnosti”, Tr. Vserossiisk. nauchn. konf. “Sovr. probl. fiziki i matem.”, Sb. nauchn. tr. (Sterlitamak, SGPI), v. 1, Gilem, Ufa, 2004, 50–55

[8] Kaliev I. A., Sabitova M. M., “Zadachi opredeleniya temperatury i plotnosti istochnikov tepla po nachalnoi i konechnoi temperaturam”, Sib. zhurn. industr. matem., 12:1 (2009), 89–97 | MR | Zbl

[9] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[10] Lang P., Locker J., “Spectral theory of two-point differential operators determined by $-D^2$. II. Analysis of cases”, J. Math. Anal. Appl., 146:1 (1990), 148–191 | DOI | MR | Zbl

[11] Mokin A. Yu., “Ob odnom semeistve nachalno-kraevykh zadach dlya uravneniya teploprovodnosti”, Differents. uravneniya, 45:1 (2009), 123–137 | MR | Zbl

[12] Sidorenko O. G., “Suschestvenno nelokalnaya zadacha dlya uravneniya smeshannogo tipa v polupolose”, Izv. vuzov. Matem., 2007, no. 3, 60–64 | MR | Zbl

[13] Sabitova Yu. K., “Nelokalnye nachalno-granichnye zadachi dlya vyrozhdayuschegosya giperbolicheskogo uravneniya”, Izv. vuzov. Matem., 2009, no. 12, 49–58 | MR | Zbl

[14] Sabitov K. B., Safin E. M., “Obratnaya zadacha dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa v pryamougolnoi oblasti”, Izv. vuzov. Matem., 2010, no. 4, 55–62 | MR | Zbl