Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2012_2_a7, author = {I. Orazov and M. A. Sadybekov}, title = {One nonlocal problem of determination of the temperature and density of heat sources}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {70--75}, publisher = {mathdoc}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2012_2_a7/} }
TY - JOUR AU - I. Orazov AU - M. A. Sadybekov TI - One nonlocal problem of determination of the temperature and density of heat sources JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2012 SP - 70 EP - 75 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2012_2_a7/ LA - ru ID - IVM_2012_2_a7 ER -
I. Orazov; M. A. Sadybekov. One nonlocal problem of determination of the temperature and density of heat sources. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 70-75. http://geodesic.mathdoc.fr/item/IVM_2012_2_a7/
[1] Anikonov Yu. E., Belov Yu. Ya., “Ob odnoznachnoi razreshimosti odnoi obratnoi zadachi dlya parabolicheskogo uravneniya”, DAN SSSR, 306:6 (1989), 1289–1293 | MR | Zbl
[2] Anikonov Yu. E., Bubnov B. A., “Suschestvovanie i edinstvennost resheniya obratnoi zadachi dlya parabolicheskogo uravneniya”, DAN SSSR, 298:4 (1988), 777–779 | MR | Zbl
[3] Bubnov B. A., “Suschestvovanie i edinstvennost resheniya obratnykh zadach dlya parabolicheskikh i ellipticheskikh uravnenii”, Neklassicheskie uravneniya matematicheskoi fiziki, Sb. nauchn. tr., Izd-vo In-ta matematiki, Novosibirsk, 1986, 25–29 | MR
[4] Prilepko A. I., Kostin A. B., “O nekotorykh obratnykh zadachakh dlya parabolicheskikh uravnenii s finalnym i integralnym nablyudeniem”, Matem. sb., 183:4 (1992), 49–68 | MR | Zbl
[5] Kozhanov A. I., “Nelineinye nagruzhennye uravneniya i obratnye zadachi”, Zhurn. vychisl. matem. i matem. fiziki, 44:4 (2004), 694–716 | MR | Zbl
[6] Monakhov V. N., “Obratnye zadachi dlya relaksatsionnykh modelei gidrodinamiki”, Vestn. Novosib. gos. un-ta. Ser. Matematika, mekhanika, informatika, 3:3 (2003), 72–80
[7] Kaliev I. A., Pervushina M. M., “Obratnye zadachi dlya uravneniya teploprovodnosti”, Tr. Vserossiisk. nauchn. konf. “Sovr. probl. fiziki i matem.”, Sb. nauchn. tr. (Sterlitamak, SGPI), v. 1, Gilem, Ufa, 2004, 50–55
[8] Kaliev I. A., Sabitova M. M., “Zadachi opredeleniya temperatury i plotnosti istochnikov tepla po nachalnoi i konechnoi temperaturam”, Sib. zhurn. industr. matem., 12:1 (2009), 89–97 | MR | Zbl
[9] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR
[10] Lang P., Locker J., “Spectral theory of two-point differential operators determined by $-D^2$. II. Analysis of cases”, J. Math. Anal. Appl., 146:1 (1990), 148–191 | DOI | MR | Zbl
[11] Mokin A. Yu., “Ob odnom semeistve nachalno-kraevykh zadach dlya uravneniya teploprovodnosti”, Differents. uravneniya, 45:1 (2009), 123–137 | MR | Zbl
[12] Sidorenko O. G., “Suschestvenno nelokalnaya zadacha dlya uravneniya smeshannogo tipa v polupolose”, Izv. vuzov. Matem., 2007, no. 3, 60–64 | MR | Zbl
[13] Sabitova Yu. K., “Nelokalnye nachalno-granichnye zadachi dlya vyrozhdayuschegosya giperbolicheskogo uravneniya”, Izv. vuzov. Matem., 2009, no. 12, 49–58 | MR | Zbl
[14] Sabitov K. B., Safin E. M., “Obratnaya zadacha dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa v pryamougolnoi oblasti”, Izv. vuzov. Matem., 2010, no. 4, 55–62 | MR | Zbl