Reliability of nonbranching programs in an arbitrary complete finite basis
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 13-22
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the realization of Boolean functions by nonbranching programs with conditional stop-operators in an arbitrary complete finite basis. We assume that conditional stop-operators are absolutely reliable, while all functional operators are prone to output inverse failures independently of each other with probability $\varepsilon$ from the interval (0,1/2). We prove that any Boolean function is realizable by a nonbranching program with unreliability $\varepsilon+81\varepsilon^2$ for all $\varepsilon\in(0,1/960]$.
Keywords:
Boolean functions, nonbranching programs, conditional stop-operator, synthesis, reliability.
@article{IVM_2012_2_a1,
author = {M. A. Alekhina and S. M. Grabovskaya},
title = {Reliability of nonbranching programs in an arbitrary complete finite basis},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {13--22},
publisher = {mathdoc},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2012_2_a1/}
}
TY - JOUR AU - M. A. Alekhina AU - S. M. Grabovskaya TI - Reliability of nonbranching programs in an arbitrary complete finite basis JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2012 SP - 13 EP - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2012_2_a1/ LA - ru ID - IVM_2012_2_a1 ER -
M. A. Alekhina; S. M. Grabovskaya. Reliability of nonbranching programs in an arbitrary complete finite basis. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 13-22. http://geodesic.mathdoc.fr/item/IVM_2012_2_a1/