Reliability of nonbranching programs in an arbitrary complete finite basis
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 13-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the realization of Boolean functions by nonbranching programs with conditional stop-operators in an arbitrary complete finite basis. We assume that conditional stop-operators are absolutely reliable, while all functional operators are prone to output inverse failures independently of each other with probability $\varepsilon$ from the interval (0,1/2). We prove that any Boolean function is realizable by a nonbranching program with unreliability $\varepsilon+81\varepsilon^2$ for all $\varepsilon\in(0,1/960]$.
Keywords: Boolean functions, nonbranching programs, conditional stop-operator, synthesis, reliability.
@article{IVM_2012_2_a1,
     author = {M. A. Alekhina and S. M. Grabovskaya},
     title = {Reliability of nonbranching programs in an arbitrary complete finite basis},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {13--22},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_2_a1/}
}
TY  - JOUR
AU  - M. A. Alekhina
AU  - S. M. Grabovskaya
TI  - Reliability of nonbranching programs in an arbitrary complete finite basis
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 13
EP  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_2_a1/
LA  - ru
ID  - IVM_2012_2_a1
ER  - 
%0 Journal Article
%A M. A. Alekhina
%A S. M. Grabovskaya
%T Reliability of nonbranching programs in an arbitrary complete finite basis
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 13-22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_2_a1/
%G ru
%F IVM_2012_2_a1
M. A. Alekhina; S. M. Grabovskaya. Reliability of nonbranching programs in an arbitrary complete finite basis. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 13-22. http://geodesic.mathdoc.fr/item/IVM_2012_2_a1/

[1] Chashkin A. V., “O srednem vremeni vychisleniya znachenii bulevykh funktsii”, Diskretn. analiz i issledov. operatsii. Ser. 1 (Novosibirsk), 4:1 (1997), 60–78 | MR | Zbl

[2] Chashkin A. V., Lektsii po diskretnoi matematike, Ucheb. posobie, MGU, mekhmat, M., 2007

[3] Alekhina M. A., Vasin A. V., “O nadezhnosti skhem v bazisakh, soderzhaschikh funktsii ne bolee chem trekh peremennykh”, Uchen. zap. Kazansk. un-ta. Ser. Fiz.-matem. nauki, 151, no. 2, 2009, 25–35 | Zbl

[4] Vasin A. V., “Ob asimptoticheski optimalnykh skhemakh v bazise $\{\,\lnot\}$ pri inversnykh neispravnostyakh na vykhodakh elementov”, Diskretn. analiz i issledov. operatsii (Novosibirsk), 16:6 (2009), 12–22 | MR

[5] Vasin A. V., Asimptoticheski optimalnye po nadezhnosti skhemy v polnykh bazisakh iz trekhvkhodovykh elementov, Diss. $\dots$ kand. fiz.-matem. nauk, Penza, 2010

[6] Redkin N. P., “O polnykh proveryayuschikh testakh dlya skhem iz funktsionalnykh elementov”, Matem. vopr. kibernetiki, 2, Nauka, M., 1989, 198–222 | MR

[7] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Uchebnoe posobie dlya vuzov, 3-e izd., ed. V. A. Sadovnichii, Vyssh. shkola, M., 2001

[8] Grabovskaya S. M., “O nadezhnosti nevetvyaschikhsya programm v bazise, soderzhaschem funktsiyu vida $x_1^{a_1}\vee x_2^{a_2}$”, Izv. vuzov. Povolzhskii region. Fiziko-matematicheskie nauki (Penza), 2010, no. 4, 31–46

[9] Grabovskaya S. M., “O nadezhnosti nevetvyaschikhsya programm v bazise, soderzhaschem funktsiyu vida $x_1^{a_1}\ x_2^{a_2}$”, Diskretn. analiz i issledov. operatsii (Novosibirsk), 19:1 (2012), 49–56