Three classes of Weitzenböck manifolds
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 92-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Weitzenböck manifold is the triplet defined by a differential manifold with the metric $g$ of a certain signature and linear connection of zero curvature tensor, the nonzero torsion tensor, and the metricity property. The theory of such manifolds is called the “new theory of gravity”. We consider properties of three classes of such manifolds and on this base prove the vanishing thorems.
Keywords: connection with torsion, curvature tensor, teleparallelism
Mots-clés : torsion tensor, Weitzenböck spaces.
@article{IVM_2012_1_a12,
     author = {I. A. Gordeeva and S. E. Stepanov},
     title = {Three classes of {Weitzenb\"ock} manifolds},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {92--95},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_1_a12/}
}
TY  - JOUR
AU  - I. A. Gordeeva
AU  - S. E. Stepanov
TI  - Three classes of Weitzenböck manifolds
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 92
EP  - 95
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_1_a12/
LA  - ru
ID  - IVM_2012_1_a12
ER  - 
%0 Journal Article
%A I. A. Gordeeva
%A S. E. Stepanov
%T Three classes of Weitzenböck manifolds
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 92-95
%N 1
%U http://geodesic.mathdoc.fr/item/IVM_2012_1_a12/
%G ru
%F IVM_2012_1_a12
I. A. Gordeeva; S. E. Stepanov. Three classes of Weitzenböck manifolds. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 92-95. http://geodesic.mathdoc.fr/item/IVM_2012_1_a12/

[1] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1981 | MR

[2] Cartan E., “Sur les variétés à connexion affine et la théorie de la relativé généralisée. Part I”, Ann. Éc. Norm., 41 (1924), 1–25 | MR | Zbl

[3] Trautman A., “Einstein–Cartan theory”, Encyclopedia of Mathematical Physics, v. 2, Elsevier, Oxford, 2006, 189–195

[4] Hayashi K., Shirafuji T., “New general relativity”, Phys. Rev. D, 19:12 (1979), 3524–3553 | DOI | MR

[5] Fernandez O. E., Bloch A. M., “The Weitzenböck connection and time reparameterization in nonholonomic mechanics”, J. Math. Phys., 52 (2011), 012901 | DOI | MR

[6] Aldrovandi R., Pereira J. G., Vu K. H., “Selected topics in teleparallel gravity”, Brazilian J. Ph., 34:4A (2004), 1374–1380

[7] Gordeeva I. A., Panzhenskii V. I., Stepanov S. E., “Mnogoobraziya Rimana–Kartana”, Itogi nauki i tekhn. Sovr. matem. i ee prilozh., 123, VINITI RAN, M., 2009, 110–141

[8] Stepanov S. E., Gordeeva I. A., “Psevdokillingovy i psevdogarmonicheskie vektornye polya na mnogoobrazii Rimana–Kartana”, Matem. zametki, 87:2 (2010), 267–279 | MR | Zbl

[9] Yano K., Bokhner C., Krivizna i chisla Betti, In. lit., M., 1957

[10] Eizenkhart L. P., Rimanova geometriya, In. lit., M., 1948