Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2012_1_a12, author = {I. A. Gordeeva and S. E. Stepanov}, title = {Three classes of {Weitzenb\"ock} manifolds}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {92--95}, publisher = {mathdoc}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2012_1_a12/} }
I. A. Gordeeva; S. E. Stepanov. Three classes of Weitzenb\"ock manifolds. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 92-95. http://geodesic.mathdoc.fr/item/IVM_2012_1_a12/
[1] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1981 | MR
[2] Cartan E., “Sur les variétés à connexion affine et la théorie de la relativé généralisée. Part I”, Ann. Éc. Norm., 41 (1924), 1–25 | MR | Zbl
[3] Trautman A., “Einstein–Cartan theory”, Encyclopedia of Mathematical Physics, v. 2, Elsevier, Oxford, 2006, 189–195
[4] Hayashi K., Shirafuji T., “New general relativity”, Phys. Rev. D, 19:12 (1979), 3524–3553 | DOI | MR
[5] Fernandez O. E., Bloch A. M., “The Weitzenböck connection and time reparameterization in nonholonomic mechanics”, J. Math. Phys., 52 (2011), 012901 | DOI | MR
[6] Aldrovandi R., Pereira J. G., Vu K. H., “Selected topics in teleparallel gravity”, Brazilian J. Ph., 34:4A (2004), 1374–1380
[7] Gordeeva I. A., Panzhenskii V. I., Stepanov S. E., “Mnogoobraziya Rimana–Kartana”, Itogi nauki i tekhn. Sovr. matem. i ee prilozh., 123, VINITI RAN, M., 2009, 110–141
[8] Stepanov S. E., Gordeeva I. A., “Psevdokillingovy i psevdogarmonicheskie vektornye polya na mnogoobrazii Rimana–Kartana”, Matem. zametki, 87:2 (2010), 267–279 | MR | Zbl
[9] Yano K., Bokhner C., Krivizna i chisla Betti, In. lit., M., 1957
[10] Eizenkhart L. P., Rimanova geometriya, In. lit., M., 1948