One nonlinear variational problem of the theory of cavitating profiles
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2012), pp. 90-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider profiles with infinite cavity streamlined in accordance with the Helmholtz–Kirchhoff scheme. We study limit values of coefficients of the rising force and the resistance with respect to the length of the streamlined part of the profile. Namely, for a given value of the coefficient of the rising force we calculate the minimal and maximal values of the resistance coefficient and thus determine the maximal and minimal values of the hydrodynamic quality.
Keywords: extremal problem, ideal fluid, Helmholtz–Kirchhoff scheme, cavitation streamline flow, hydrodynamic quality.
@article{IVM_2012_12_a8,
     author = {D. V. Maklakov and I. R. Kayumov},
     title = {One nonlinear variational problem of the theory of cavitating profiles},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {90--96},
     publisher = {mathdoc},
     number = {12},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_12_a8/}
}
TY  - JOUR
AU  - D. V. Maklakov
AU  - I. R. Kayumov
TI  - One nonlinear variational problem of the theory of cavitating profiles
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 90
EP  - 96
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_12_a8/
LA  - ru
ID  - IVM_2012_12_a8
ER  - 
%0 Journal Article
%A D. V. Maklakov
%A I. R. Kayumov
%T One nonlinear variational problem of the theory of cavitating profiles
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 90-96
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_12_a8/
%G ru
%F IVM_2012_12_a8
D. V. Maklakov; I. R. Kayumov. One nonlinear variational problem of the theory of cavitating profiles. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2012), pp. 90-96. http://geodesic.mathdoc.fr/item/IVM_2012_12_a8/

[1] Elizarov A. M., Ilinskii N. B., Potashev A. V., Obratnye kraevye zadachi aerogidrodinamiki: teoriya i metody proektirovaniya i optimizatsii formy krylovykh profilei, Fizmatlit, M., 1994 | MR | Zbl

[2] Elizarov A. M., Kasimov A. R., Maklakov D. V., Zadachi optimizatsii formy v aerogidrodinamike, Fizmatlit, M., 2008

[3] Maklakov D. V., “Analog teoremy Kutta–Zhukovskogo pri obtekanii profilya s otryvom strui”, Dokl. RAN, 441:2 (2011), 187–190 | MR

[4] Maklakov D. V., “On the lift and drag of cavitating profiles and the maximum lift and drag”, J. Fluid Mech., 687 (2011), 360–375 | DOI | MR | Zbl

[5] Gurevich M. I., Teoriya strui idealnoi zhidkosti, 2-e izd., Nauka, M., 1979

[6] Lavrentev M. A., Lyusternik L. A., Kurs variatsionnogo ischisleniya, GITL, M.–L., 1950

[7] Maklakov D. V., “O maksimume soprotivleniya krivolineinogo prepyatstviya, obtekaemogo s otryvom strui”, DAN SSSR, 298:3 (1988), 574–577 | MR | Zbl

[8] Maklakov D. V., Uglov A. N., “On the maximum drag of a curved plate in flow with a wake”, Eur. J. Appl. Math., 6:5 (1995), 517–527 | DOI | MR | Zbl

[9] Maklakov D. V., “A note on the optimum profile of a sprayless planing surface”, J. Fluid Mech., 384 (1999), 281–292 | DOI | Zbl

[10] Maklakov D. V., “Some remarks on the exact solution for an optimal impermeable parachute problem”, J. Comput. and Appl. Math., 166:2 (2004), 591–596 | DOI | MR | Zbl

[11] Maklakov D. V., “On deflectors of optimum shape”, J. Fluid Mech., 540 (2005), 175–187 | DOI | MR | Zbl

[12] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, In. lit., M., 1948