A Stinespring type representation for operators in Hilbert modules over local $C^\star$-algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2012), pp. 51-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an analog of the Stinespring theorem for Hilbert modules over local $C^\star$-algebras.
Mots-clés : Hilbert modules
Keywords: local $C^\star$-algebras, local Hilbert spaces, $(\star)$-homomorphisms, completely positive maps.
@article{IVM_2012_12_a4,
     author = {I. N. Maliev and M. A. Pliev},
     title = {A {Stinespring} type representation for operators in {Hilbert} modules over local $C^\star$-algebras},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {51--58},
     publisher = {mathdoc},
     number = {12},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_12_a4/}
}
TY  - JOUR
AU  - I. N. Maliev
AU  - M. A. Pliev
TI  - A Stinespring type representation for operators in Hilbert modules over local $C^\star$-algebras
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 51
EP  - 58
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_12_a4/
LA  - ru
ID  - IVM_2012_12_a4
ER  - 
%0 Journal Article
%A I. N. Maliev
%A M. A. Pliev
%T A Stinespring type representation for operators in Hilbert modules over local $C^\star$-algebras
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 51-58
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_12_a4/
%G ru
%F IVM_2012_12_a4
I. N. Maliev; M. A. Pliev. A Stinespring type representation for operators in Hilbert modules over local $C^\star$-algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2012), pp. 51-58. http://geodesic.mathdoc.fr/item/IVM_2012_12_a4/

[1] Kaplansky I., “Modules over operator algebras”, Amer. J. Math., 75 (1953), 839–858 | DOI | MR | Zbl

[2] Manuilov V. M., Troitskii E. V., $C^\star$-gilbertovy moduli, Faktorial, M., 2001

[3] Lance E. C., Hilbert $C^\star$-modules. A toolkit for operator algebraists, Cambridge University Press, 1995 | MR | Zbl

[4] Apostol C., “$b^\star$-algebras and their representations”, J. London Math. Soc., 3 (1971), 30–38 | DOI | MR | Zbl

[5] Inoue A., “Locally $C^\star$-algebras”, Mem. Faculty. Sci. Kyushu. Univ. Ser. A, 25 (1971), 197–235 | DOI | MR | Zbl

[6] Phillips C., “Inverse limits of $C^\star$-algebras”, J. Operator Theory, 19 (1988), 159–195 | MR | Zbl

[7] Joita M., Hilbert modules over locally $C^\star$-algebras, University of Bucharest Press, 2006

[8] Nielsen M. A., Chuang I. L., Quantum computation and quantum information, Cambridge Iniversity Press, 2000 | MR

[9] Stinespring F., “Positive functions on $C^\star$-algebras”, Proc. Amer. Math. Soc., 2 (1955), 211–216 | MR

[10] Kasparov G. G., “Hilbert $C^\star$-modules: The theorems of Stinespring and Voiculescu”, J. Operator Theory, 4 (1980), 133–150 | MR | Zbl

[11] Joita M., “Hilbert modules over locally $C^\star$-algebras: theorem of Stinespring”, Math. Rep. (Bucur.), 53:3 (2001), 21–27 | MR | Zbl

[12] Asadi M. D., “Stinespring's theorem for Hilbert $C^\star$-modules”, J. Operator Theory, 62:2 (2009), 235–238 | MR | Zbl

[13] Bhat R., Ramesh G., Sumesh K., Stinespring's theorem for maps on Hilbert $C^\star$-modules, Preprint, arXiv: 1001.3743

[14] Merfi D., $C^\star$-algebry i teoriya operatorov, Faktorial, M., 1997

[15] Fragoulopoulou M., Topological algebras with involution, Elsevier, 2005 | MR | Zbl

[16] Mallios A., Topological algebras: Selected topics, North-Holland Publishing Company, 1986 | MR | Zbl