Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2012_12_a0, author = {M. Barnsley and K. B. Igudesman}, title = {Overlapping iterated function systems on a~segment}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--15}, publisher = {mathdoc}, number = {12}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2012_12_a0/} }
M. Barnsley; K. B. Igudesman. Overlapping iterated function systems on a~segment. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2012), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2012_12_a0/
[1] Barnsley M. F., “Theory and applications of fractal tops”, Fractals in engineering. New trends in theory and applications, Springer-Verlag, London, 2005, 3–20 | Zbl
[2] Igudesman K. B., “Verkhnie adresa dlya odnogo semeistva sistem iterirovannykh funktsii na otrezke”, Izv. vuzov. Matem., 2009, no. 9, 75–81 | MR | Zbl
[3] Igudesman K. B., “Ob odnom semeistve samopodobnykh mnozhestv”, Izv. vuzov. Matem., 2011, no. 2, 31–45 | MR | Zbl
[4] Barnsley M. F., Harding B., Igudesman K., “How to transform and filtering images using iterated function systems”, SIAM J. Imaging Sci., 4 (2011), 1001–1028 | DOI | MR | Zbl
[5] Barnsley M. F., Mihalache N., Symmetric itinerary sets, (in press)
[6] Barnsley M. F., Harding B., Vince A., Homeomorphisms generated from overlapping affine iterated function systems, (in press)
[7] Hutchinson J., “Fractals and self similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl
[8] Hata M., “On the structure of self-similar sets”, Japan J. Appl. Math., 2:2 (1985), 381–414 | DOI | MR | Zbl
[9] Williams R. F., “Composition of contractions”, Bol. Soc. Bras. Mat., 2:2 (1971), 55–59 | DOI | MR | Zbl
[10] Barnsley M. F., Superfractals, Cambridge University Press, Cambridge, 2006 | MR | Zbl
[11] Barnsley M. F., Demko S., “Iterated function systems and the global construction of fractals”, Proc. R. Soc. Lond. Ser. A, 399:1817 (1985), 243–275 | DOI | MR | Zbl
[12] Barnsley M. F., “Transformations between self-referential sets”, Amer. Math. Monthly, 116:4 (2009), 291–304 | DOI | MR | Zbl
[13] Munkres J. R., Topology. A first course, Prentice-Hall, Englewood Cliffs, N.J., 1975 | MR | Zbl
[14] Parry W., “Symbolic dynamics and transformations of the unit interval”, Trans. Amer. Math. Soc., 122:2 (1966), 368–378 | DOI | MR | Zbl
[15] Shultz F., “Dimension groups for interval maps. II: The transitive case”, Ergodic Theory Dyn. Syst., 27:4 (2007), 1287–1321 | DOI | MR | Zbl