Overlapping iterated function systems on a~segment
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2012), pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

Overlapping iterated function systems generate families of injective mappings from the attractor onto shift-invariant subsets of the code space. In this paper we consider an example of such a family for the uniformly linear systems of iterated functions on the unit segment.
Keywords: iterated function systems, attractor, dynamical system.
@article{IVM_2012_12_a0,
     author = {M. Barnsley and K. B. Igudesman},
     title = {Overlapping iterated function systems on a~segment},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--15},
     publisher = {mathdoc},
     number = {12},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_12_a0/}
}
TY  - JOUR
AU  - M. Barnsley
AU  - K. B. Igudesman
TI  - Overlapping iterated function systems on a~segment
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 3
EP  - 15
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_12_a0/
LA  - ru
ID  - IVM_2012_12_a0
ER  - 
%0 Journal Article
%A M. Barnsley
%A K. B. Igudesman
%T Overlapping iterated function systems on a~segment
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 3-15
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_12_a0/
%G ru
%F IVM_2012_12_a0
M. Barnsley; K. B. Igudesman. Overlapping iterated function systems on a~segment. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2012), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2012_12_a0/

[1] Barnsley M. F., “Theory and applications of fractal tops”, Fractals in engineering. New trends in theory and applications, Springer-Verlag, London, 2005, 3–20 | Zbl

[2] Igudesman K. B., “Verkhnie adresa dlya odnogo semeistva sistem iterirovannykh funktsii na otrezke”, Izv. vuzov. Matem., 2009, no. 9, 75–81 | MR | Zbl

[3] Igudesman K. B., “Ob odnom semeistve samopodobnykh mnozhestv”, Izv. vuzov. Matem., 2011, no. 2, 31–45 | MR | Zbl

[4] Barnsley M. F., Harding B., Igudesman K., “How to transform and filtering images using iterated function systems”, SIAM J. Imaging Sci., 4 (2011), 1001–1028 | DOI | MR | Zbl

[5] Barnsley M. F., Mihalache N., Symmetric itinerary sets, (in press)

[6] Barnsley M. F., Harding B., Vince A., Homeomorphisms generated from overlapping affine iterated function systems, (in press)

[7] Hutchinson J., “Fractals and self similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl

[8] Hata M., “On the structure of self-similar sets”, Japan J. Appl. Math., 2:2 (1985), 381–414 | DOI | MR | Zbl

[9] Williams R. F., “Composition of contractions”, Bol. Soc. Bras. Mat., 2:2 (1971), 55–59 | DOI | MR | Zbl

[10] Barnsley M. F., Superfractals, Cambridge University Press, Cambridge, 2006 | MR | Zbl

[11] Barnsley M. F., Demko S., “Iterated function systems and the global construction of fractals”, Proc. R. Soc. Lond. Ser. A, 399:1817 (1985), 243–275 | DOI | MR | Zbl

[12] Barnsley M. F., “Transformations between self-referential sets”, Amer. Math. Monthly, 116:4 (2009), 291–304 | DOI | MR | Zbl

[13] Munkres J. R., Topology. A first course, Prentice-Hall, Englewood Cliffs, N.J., 1975 | MR | Zbl

[14] Parry W., “Symbolic dynamics and transformations of the unit interval”, Trans. Amer. Math. Soc., 122:2 (1966), 368–378 | DOI | MR | Zbl

[15] Shultz F., “Dimension groups for interval maps. II: The transitive case”, Ergodic Theory Dyn. Syst., 27:4 (2007), 1287–1321 | DOI | MR | Zbl