Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2012_11_a0, author = {S. Yu. Antonov}, title = {The least degree of identities in the subspace $M_1^{(m,k)}(F)$ of the matrix superalgebra~$M^{(m,k)}(F)$}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--19}, publisher = {mathdoc}, number = {11}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2012_11_a0/} }
TY - JOUR AU - S. Yu. Antonov TI - The least degree of identities in the subspace $M_1^{(m,k)}(F)$ of the matrix superalgebra~$M^{(m,k)}(F)$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2012 SP - 3 EP - 19 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2012_11_a0/ LA - ru ID - IVM_2012_11_a0 ER -
%0 Journal Article %A S. Yu. Antonov %T The least degree of identities in the subspace $M_1^{(m,k)}(F)$ of the matrix superalgebra~$M^{(m,k)}(F)$ %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2012 %P 3-19 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2012_11_a0/ %G ru %F IVM_2012_11_a0
S. Yu. Antonov. The least degree of identities in the subspace $M_1^{(m,k)}(F)$ of the matrix superalgebra~$M^{(m,k)}(F)$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2012), pp. 3-19. http://geodesic.mathdoc.fr/item/IVM_2012_11_a0/
[1] Pirs R., Assotsiativnye algebry, Mir, M., 1986 | MR
[2] Amitsur S. A., Levitzki J., “Minimal identities for algebras”, Proc. Amer. Math. Soc., 1:4 (1950), 449–463 | DOI | MR | Zbl
[3] Antonov S. Yu., “Nekotorye otsenki naimenshei stepeni tozhdestv podprostranstva $M_1^{(m,k)}(F)$ matrichnoi superalgebry $M^{(m,k)}(F)$”, Izv. vuzov. Matem., 2012, no. 5, 13–27
[4] Chang Q., “Some consequences of the standard polynomial”, Proc. Amer. Math. Soc., 104:3 (1988), 707–710 | DOI | MR | Zbl
[5] Domokos M., “A generalization of a theorem of Chang”, Commun. Algebra, 23:12 (1995), 4333–4342 | DOI | MR | Zbl
[6] Giambruno A., Sehgal S .K., “On a polynomial identity for $n\times n$ matrices”, J. Algebra, 126:2 (1989), 451–453 | DOI | MR | Zbl