The least degree of identities in the subspace $M_1^{(m,k)}(F)$ of the matrix superalgebra $M^{(m,k)}(F)$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2012), pp. 3-19
Cet article a éte moissonné depuis la source Math-Net.Ru
We determine the least degree of identities in the subspace $M_1^{(m, k)}(F)$ of the matrix superalgebra $M^{(m, k)}(F)$ over the field $F$ for arbitrary $m$ and $k$. For the subspace $M_1^{(m, k)}(F)$ $(k>1)$ we obtain concrete minimal identities and generalize some results by Chang and Domokos.
Mots-clés :
double Capelli polynomial
Keywords: polynomial identity, matrix superalgebra.
Keywords: polynomial identity, matrix superalgebra.
@article{IVM_2012_11_a0,
author = {S. Yu. Antonov},
title = {The least degree of identities in the subspace $M_1^{(m,k)}(F)$ of the matrix superalgebra~$M^{(m,k)}(F)$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--19},
year = {2012},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2012_11_a0/}
}
TY - JOUR
AU - S. Yu. Antonov
TI - The least degree of identities in the subspace $M_1^{(m,k)}(F)$ of the matrix superalgebra $M^{(m,k)}(F)$
JO - Izvestiâ vysših učebnyh zavedenij. Matematika
PY - 2012
SP - 3
EP - 19
IS - 11
UR - http://geodesic.mathdoc.fr/item/IVM_2012_11_a0/
LA - ru
ID - IVM_2012_11_a0
ER -
S. Yu. Antonov. The least degree of identities in the subspace $M_1^{(m,k)}(F)$ of the matrix superalgebra $M^{(m,k)}(F)$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2012), pp. 3-19. http://geodesic.mathdoc.fr/item/IVM_2012_11_a0/
[1] Pirs R., Assotsiativnye algebry, Mir, M., 1986 | MR
[2] Amitsur S. A., Levitzki J., “Minimal identities for algebras”, Proc. Amer. Math. Soc., 1:4 (1950), 449–463 | DOI | MR | Zbl
[3] Antonov S. Yu., “Nekotorye otsenki naimenshei stepeni tozhdestv podprostranstva $M_1^{(m,k)}(F)$ matrichnoi superalgebry $M^{(m,k)}(F)$”, Izv. vuzov. Matem., 2012, no. 5, 13–27
[4] Chang Q., “Some consequences of the standard polynomial”, Proc. Amer. Math. Soc., 104:3 (1988), 707–710 | DOI | MR | Zbl
[5] Domokos M., “A generalization of a theorem of Chang”, Commun. Algebra, 23:12 (1995), 4333–4342 | DOI | MR | Zbl
[6] Giambruno A., Sehgal S .K., “On a polynomial identity for $n\times n$ matrices”, J. Algebra, 126:2 (1989), 451–453 | DOI | MR | Zbl