Linear relations generated by an integral equation with Nevanlinna operator measure
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2012), pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define families of maximal and minimal linear relations generated by an integral equation with Nevanlinna operator measure and prove their holomorphic property. We also prove that if a restriction of a maximal relation is continuously invertible, then the operator inverse to this restriction is integral. We apply the obtained results for proving the constancy of deficient numbers of some integral and differential equations.
Keywords: Hilbert space, linear relation, integral equation, holomorphic family of relations, deficient number.
@article{IVM_2012_10_a0,
     author = {V. M. Bruk},
     title = {Linear relations generated by an integral equation with {Nevanlinna} operator measure},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--19},
     publisher = {mathdoc},
     number = {10},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_10_a0/}
}
TY  - JOUR
AU  - V. M. Bruk
TI  - Linear relations generated by an integral equation with Nevanlinna operator measure
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 3
EP  - 19
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_10_a0/
LA  - ru
ID  - IVM_2012_10_a0
ER  - 
%0 Journal Article
%A V. M. Bruk
%T Linear relations generated by an integral equation with Nevanlinna operator measure
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 3-19
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_10_a0/
%G ru
%F IVM_2012_10_a0
V. M. Bruk. Linear relations generated by an integral equation with Nevanlinna operator measure. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2012), pp. 3-19. http://geodesic.mathdoc.fr/item/IVM_2012_10_a0/

[1] Khrabustovsky V. I., “On the characteristic operators and projections and on the solutions of Weil type of dissipative and accumulative operator systems. 1. General case”, J. Math. Phys. Anal. Geometry, 2:2 (2006), 149–175 | MR | Zbl

[2] Khrabustovsky V. I., “On the characteristic operators and projections and on the solutions of Weil type of dissipative and accumulative operator systems. 2. Abstract theory”, J. Math. Phys. Anal. Geometry, 2:3 (2006), 299–317 | MR | Zbl

[3] Khrabustovsky V. I., “On the characteristic operators and projections and on the solutions of Weil type of dissipative and accumulative operator systems. 3. Separated boundary conditions”, J. Math. Phys. Anal. Geometry, 2:4 (2006), 449–473 | MR | Zbl

[4] Bruk V. M., “On linear relations generated by a differential expression and by a Nevanlinna operator function”, J. Math. Phys. Anal. Geometry, 7:2 (2011), 115–140 | MR | Zbl

[5] Khrabustovsky V., “Expansion in eigenfunctions of relations generated by pair of operator differential expressions”, Methods Funct. Anal. and Topology, 15:2 (2009), 137–151 | MR | Zbl

[6] Pokornyi Yu. V., Zvereva M. B., Shabrov S. A., “Ostsillyatsionnaya teoriya Shturma–Liuvillya dlya impulsnykh zadach”, UMN, 63:1 (2008), 111–154 | DOI | MR | Zbl

[7] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | MR | Zbl

[8] Goriunov A., Mikhailets V., “Regularization of singular Sturm–Liouville equations”, Methods Funct. Anal. and Topology, 16:2 (2010), 120–130 | MR | Zbl

[9] Rofe-Beketov F. S., “Square-integrable solutions, self-adjoint extensions and spectrum of differential systems”, Differ. Equ., Proc. of Intern. Conf. on Differ. Eq., Uppsala, 1977, 169–178 | MR | Zbl

[10] Orlov S. A., “Gnezdyaschiesya matrichnye krugi, analiticheski zavisyaschie ot parametra, i teoremy o invariantnosti rangov radiusov predelnykh krugov”, Izv. AN SSSR. Ser. matem., 40:3 (1976), 593–644 | MR | Zbl

[11] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[12] Brodskii M. S., Treugolnye i zhordanovy predstavleniya lineinykh operatorov, Nauka, M., 1969 | MR

[13] Baskakov A. G., “Spektralnyi analiz differentsialnykh operatorov s neogranichennymi operatornymi koeffitsientami, raznostnye otnosheniya i polugruppy raznostnykh otnoshenii”, Izv. RAN. Ser. matem., 73:2 (2009), 3–68 | DOI | MR | Zbl

[14] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[15] Coddington E. A., “Extension theory of formally normal and symmetric subspaces”, Mem. Amer. Math. Soc., 134 (1973), 1–80 | MR

[16] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[17] Bruk V. M., “Generalized resolvents of symmetric relations generated on semi-axis by a differential expression and a nonnegative operator function”, J. Math. Phys. Anal. Geometry, 2:4 (2006), 372–387 | MR | Zbl

[18] Kogan V. I., Rofe-Beketov F. S., “On square-integrable solutions of symmetric systems of differential equations of arbitrary order”, Proc. Roy. Soc. Edinburgh A, 74 (1975), 5–40 | MR