Mots-clés : matrices, Lie algebras.
@article{IVM_2011_9_a3,
author = {V. P. Derevenskii},
title = {Trigonometric solutions of nonlinear first-order ordinary differential equations over {a~Banach} algebra},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {30--43},
year = {2011},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_9_a3/}
}
TY - JOUR AU - V. P. Derevenskii TI - Trigonometric solutions of nonlinear first-order ordinary differential equations over a Banach algebra JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 30 EP - 43 IS - 9 UR - http://geodesic.mathdoc.fr/item/IVM_2011_9_a3/ LA - ru ID - IVM_2011_9_a3 ER -
V. P. Derevenskii. Trigonometric solutions of nonlinear first-order ordinary differential equations over a Banach algebra. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2011), pp. 30-43. http://geodesic.mathdoc.fr/item/IVM_2011_9_a3/
[1] Derevenskii V. P., “Giperbolicheskie funktsii i nelineinye obyknovennye differentsialnye uravneniya pervogo poryadka nad banakhovoi algebroi”, Izv. vuzov. Matem., 2006, no. 8, 7–18 | MR
[2] S. G. Krein, Funktsionalnyi analiz, Ser. Spravochnaya matematicheskaya biblioteka, 2-e izd., Nauka, M., 1972
[3] Arnold V. I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1971
[4] Dzhekobson N., Algebry Li, Mir, M., 1964
[5] Magnus W., “On the exponential solution of differential equations for a linear operator”, Commun. Pure Appl. Math., 7:4 (1954), 649–673 | DOI | MR | Zbl
[6] Wilcox R. M., “Exponential operators and parameter differentiation in quantum physics”, J. Math. Phys., 8:4 (1967), 962–982 | DOI | MR | Zbl
[7] Eizenkhart L. P., Nepreryvnye gruppy preobrazovanii, GIIL, M., 1947
[8] Derevenskii V. P., “Integriruemost uravneniya Rikkati i lineinogo odnorodnogo differentsialnogo uravneniya vtorogo poryadka”, Izv. vuzov. Matem., 1987, no. 5, 33–40 | MR | Zbl
[9] Zaitsev V. F., Polyanin A. D., Spravochnik po obyknovennym differentsialnym uravneniyam, Fizmatlit, M., 2001