Trigonometric solutions of nonlinear first-order ordinary differential equations over a~Banach algebra
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2011), pp. 30-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we continue the study initiated in the recent paper (see Russian Mathematics (Iz. VUZ) 50 (8), 5–17 (2006)). We determine differentiation formulas for basic trigonometric functions and describe classes of nonlinear first-order ordinary differential equations (ODE.1) over a finite-dimensional Banach algebra whose solutions are the mentioned functions.
Keywords: differential equations
Mots-clés : matrices, Lie algebras.
@article{IVM_2011_9_a3,
     author = {V. P. Derevenskii},
     title = {Trigonometric solutions of nonlinear first-order ordinary differential equations over {a~Banach} algebra},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {30--43},
     publisher = {mathdoc},
     number = {9},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_9_a3/}
}
TY  - JOUR
AU  - V. P. Derevenskii
TI  - Trigonometric solutions of nonlinear first-order ordinary differential equations over a~Banach algebra
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 30
EP  - 43
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_9_a3/
LA  - ru
ID  - IVM_2011_9_a3
ER  - 
%0 Journal Article
%A V. P. Derevenskii
%T Trigonometric solutions of nonlinear first-order ordinary differential equations over a~Banach algebra
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 30-43
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_9_a3/
%G ru
%F IVM_2011_9_a3
V. P. Derevenskii. Trigonometric solutions of nonlinear first-order ordinary differential equations over a~Banach algebra. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2011), pp. 30-43. http://geodesic.mathdoc.fr/item/IVM_2011_9_a3/

[1] Derevenskii V. P., “Giperbolicheskie funktsii i nelineinye obyknovennye differentsialnye uravneniya pervogo poryadka nad banakhovoi algebroi”, Izv. vuzov. Matem., 2006, no. 8, 7–18 | MR

[2] S. G. Krein, Funktsionalnyi analiz, Ser. Spravochnaya matematicheskaya biblioteka, 2-e izd., Nauka, M., 1972

[3] Arnold V. I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1971

[4] Dzhekobson N., Algebry Li, Mir, M., 1964

[5] Magnus W., “On the exponential solution of differential equations for a linear operator”, Commun. Pure Appl. Math., 7:4 (1954), 649–673 | DOI | MR | Zbl

[6] Wilcox R. M., “Exponential operators and parameter differentiation in quantum physics”, J. Math. Phys., 8:4 (1967), 962–982 | DOI | MR | Zbl

[7] Eizenkhart L. P., Nepreryvnye gruppy preobrazovanii, GIIL, M., 1947

[8] Derevenskii V. P., “Integriruemost uravneniya Rikkati i lineinogo odnorodnogo differentsialnogo uravneniya vtorogo poryadka”, Izv. vuzov. Matem., 1987, no. 5, 33–40 | MR | Zbl

[9] Zaitsev V. F., Polyanin A. D., Spravochnik po obyknovennym differentsialnym uravneniyam, Fizmatlit, M., 2001