Invariants of the action of a~semisimple finite-dimensional Hopf algebra on special algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 14-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we extend classical results of the invariant theory of finite groups to the action of a finite-dimensional semisimple Hopf algebra $H$ on a special algebra $A$, which is homomorphically mapped onto a commutative integral domain, and the kernel of this map contains no nonzero $H$-stable ideal. We prove that the algebra $A$ is finitely generated as a module over a subalgebra of invariants, and the latter is finitely generated as a $\mathbf k$-algebra. We give a counterexample for the finite generation of a non-semisimple Hopf algebra.
Keywords: Hopf algebras, invariant rings.
@article{IVM_2011_8_a2,
     author = {M. S. Eryashkin},
     title = {Invariants of the action of a~semisimple finite-dimensional {Hopf} algebra on special algebras},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {14--22},
     publisher = {mathdoc},
     number = {8},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_8_a2/}
}
TY  - JOUR
AU  - M. S. Eryashkin
TI  - Invariants of the action of a~semisimple finite-dimensional Hopf algebra on special algebras
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 14
EP  - 22
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_8_a2/
LA  - ru
ID  - IVM_2011_8_a2
ER  - 
%0 Journal Article
%A M. S. Eryashkin
%T Invariants of the action of a~semisimple finite-dimensional Hopf algebra on special algebras
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 14-22
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_8_a2/
%G ru
%F IVM_2011_8_a2
M. S. Eryashkin. Invariants of the action of a~semisimple finite-dimensional Hopf algebra on special algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 14-22. http://geodesic.mathdoc.fr/item/IVM_2011_8_a2/

[1] Sweedler M. E., Hopf algebras, W. A. Benjamin, New York, 1969 | MR | Zbl

[2] Montgomery S., Hopf algebras and their actions on rings, CBMS Reg. Conf. Ser. Math., 82, Amer. Math. Soc., 1993 | MR | Zbl

[3] Skryabin S. M., “Invariants of finite Hopf algebras”, Adv. Math., 183:2 (2004), 209–239 | DOI | MR | Zbl

[4] Artamonov V. A., “Invarianty algebr Khopfa”, Vestn. Mosk. un-ta. Ser. matem. mekhan., 1996, no. 4, 45–49 ; “Исправление”, Вестн. Моск. ун-та. Сер. матем. механ., 1997, No 2, 64 | MR | Zbl | MR

[5] Zhu Shenglin, “Integrality of module algebras over its invariants”, J. Algebra, 180:1 (1996), 187–205 | DOI | MR | Zbl

[6] Totok A. A., “Ob invariantakh konechnomernykh tochechnykh algebr Khopfa”, Vestn. Mosk. un-ta. Ser. matem. mekhan., 1997, no. 3, 31–34 | MR

[7] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, M., 1972 | MR

[8] Springer T., Teoriya invariantov, Mir, M., 1981 | MR | Zbl

[9] Skryabin S. M., “Projectivity and freeness over comodule algebras”, Trans. Amer. Math. Soc., 359:6 (2007), 2597–2623 | DOI | MR | Zbl