Invariants of the action of a~semisimple finite-dimensional Hopf algebra on special algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 14-22
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we extend classical results of the invariant theory of finite groups to the action of a finite-dimensional semisimple Hopf algebra $H$ on a special algebra $A$, which is homomorphically mapped onto a commutative integral domain, and the kernel of this map contains no nonzero $H$-stable ideal. We prove that the algebra $A$ is finitely generated as a module over a subalgebra of invariants, and the latter is finitely generated as a $\mathbf k$-algebra. We give a counterexample for the finite generation of a non-semisimple Hopf algebra.
Keywords:
Hopf algebras, invariant rings.
@article{IVM_2011_8_a2,
author = {M. S. Eryashkin},
title = {Invariants of the action of a~semisimple finite-dimensional {Hopf} algebra on special algebras},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {14--22},
publisher = {mathdoc},
number = {8},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_8_a2/}
}
TY - JOUR AU - M. S. Eryashkin TI - Invariants of the action of a~semisimple finite-dimensional Hopf algebra on special algebras JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 14 EP - 22 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2011_8_a2/ LA - ru ID - IVM_2011_8_a2 ER -
M. S. Eryashkin. Invariants of the action of a~semisimple finite-dimensional Hopf algebra on special algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2011), pp. 14-22. http://geodesic.mathdoc.fr/item/IVM_2011_8_a2/