$N$-homogeneous $C^*$-algebras generated by idempotents
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2011), pp. 94-103
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider the $n$-homogeneous $C^*$-algebras generated by idempotents. We prove that a finitely generated unital $n$-homogeneous (when $n$ is greater than or equal to $2$) $C^*$-algebra $A$ can be generated by finite number of idempotents if and only if the algebra $A$ contains at least one non-trivial idempotent.
Keywords:
$n$-homogeneous $C^*$-algebra, algebraic bundle, idempotent, finitely generated algebra.
@article{IVM_2011_7_a9,
author = {M. V. Shchukin},
title = {$N$-homogeneous $C^*$-algebras generated by idempotents},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {94--103},
publisher = {mathdoc},
number = {7},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_7_a9/}
}
M. V. Shchukin. $N$-homogeneous $C^*$-algebras generated by idempotents. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2011), pp. 94-103. http://geodesic.mathdoc.fr/item/IVM_2011_7_a9/